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Abstract

This document is based on the manuscript of Kraemer et al. (2018)
which was published in the R-Journal and has been modified and ex-
tended to fit the format of a package vignette and to match the extended
functionality of the dimRed package.

“Dimensionality reduction” (DR) is a widely used approach to find low
dimensional and interpretable representations of data that are natively
embedded in high-dimensional spaces. DR can be realized by a plethora of
methods with different properties, objectives, and, hence, (dis)advantages.
The resulting low-dimensional data embeddings are often difficult to com-
pare with objective criteria. Here, we introduce the dimRed and coRank-

ing packages for the R language. These open source software packages
enable users to easily access multiple classical and advanced DR methods
using a common interface. The packages also provide quality indicators
for the embeddings and easy visualization of high dimensional data. The
coRanking package provides the functionality for assessing DR methods
in the co-ranking matrix framework. In tandem, these packages allow for
uncovering complex structures high dimensional data. Currently 15 DR
methods are available in the package, some of which were not previously
available to R users. Here, we outline the dimRed and coRanking pack-
ages and make the implemented methods understandable to the interested
reader.

1 Introduction

Dimensionality Reduction (DR) essentially aims to find low dimensional
representations of data while preserving their key properties. Many meth-
ods exist in literature, optimizing different criteria: maximizing the vari-
ance or the statistical independence of the projected data, minimizing the
reconstruction error under different constraints, or optimizing for differ-
ent error metrics, just to name a few. Choosing an inadequate method
may imply that much of the underlying structure remains undiscovered.
Often the structures of interest in a data set can be well represented by
fewer dimensions than exist in the original data. Data compression of this
kind has the additional benefit of making the encoded information better
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conceivable to our brains for further analysis tasks like classification or
regression problems.

For example, the morphology of a plant’s leaves, stems, and seeds re-
flect the environmental conditions the species usually grow in (e.g., plants
with large soft leaves will never grow in a desert but might have an advan-
tage in a humid and shadowy environment). Because the morphology of
the entire plant depends on the environment, many morphological combi-
nations will never occur in nature and the morphological space of all plant
species is tightly constrained. Díaz et al. (2016) found that out of six ob-
served morphological characteristics only two embedding dimensions were
enough to represent three quarters of the totally observed variability.

DR is a widely used approach for the detection of structure in multi-
variate data, and has applications in a variety of fields. In climatology,
DR is used to find the modes of some phenomenon, e.g., the first Em-
pirical Orthogonal Function of monthly mean sea surface temperature of
a given region over the Pacific is often linked to the El Niño Southern
Oscillation or ENSO (e.g., Hsieh, 2004). In ecology the comparison of
sites with different species abundances is a classical multivariate problem:
each observed species adds an extra dimension, and because species are
often bound to certain habitats, there is a lot of redundant information.
Using DR is a popular technique to represent the sites in few dimensions,
e.g., Aart (1972) matches wolfspider communities to habitat and Morrall
(1974) match soil fungi data to soil types. (In ecology the general name
for DR is ordination or indirect gradient analysis.) Today, hyperspectral
satellite imagery collects so many bands that it is very difficult to an-
alyze and interpret the data directly. Resuming the data into a set of
few, yet independent, components is one way to reduce complexity (e.g.,
see Laparra et al., 2015). DR can also be used to visualize the interi-
ors of deep neural networks (e.g., see Han et al., 2017), where the high
dimensionality comes from the large number of weights used in a neural
network and convergence can be visualized by means of DR. We could
find many more example applications here but this is not the main focus
of this publication.

The difficulty in applying DR is that each DR method is designed to
maintain certain aspects of the original data and therefore may be ap-
propriate for one task and inappropriate for another. Most methods also
have parameters to tune and follow different assumptions. The quality
of the outcome may strongly depend on their tuning, which adds addi-
tional complexity. DR methods can be modeled after physical models
with attracting and repelling forces (Force Directed Methods), projec-
tions onto low dimensional planes (PCA, ICA), divergence of statistical
distributions (SNE family), or the reconstruction of local spaces or points
by their neighbors (LLE).

As an example for how changing internal parameters of a method can
have a great impact, the breakthrough for Stochastic Neighborhood Em-
bedding (SNE) methods came when a Student’s t-distribution was used
instead of a normal distribution to model probabilities in low dimensional
space to avoid the “crowding problem”, that is, a sphere in high dimen-
sional space has a much larger volume than in low dimensional space
and may contain too many points to be represented accurately in few di-
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mensions. The t-distribution, allows medium distances to be accurately
represented in few dimensions by larger distances due to its heavier tails.
The result is called in t-SNE and is especially good at preserving local
structures in very few dimensions, this feature made t-SNE useful for a
wide array of data visualization tasks and the method became much more
popular than standard SNE (around six times more citations of van der
Maaten and Hinton (2008) compared to Hinton and Roweis (2003) in
Scopus (Elsevier, 2017)).

There are a number of software packages for other languages provid-
ing collections of methods: In Python there is scikit-learn (Pedregosa
et al., 2011), which contains a module for DR. In Julia we currently find
ManifoldLearning.jl for nonlinear and MultivariateStats.jl for linear DR
methods. There are several toolboxes for DR implemented in Matlab (Van
Der Maaten et al., 2009; Arenas-Garcia et al., 2013). The Shogun toolbox
(Sonnenburg et al., 2017) implements a variety of methods for dimension-
ality reduction in C++ and offers bindings for a many common high level
languages (including R, but the installation is anything but simple, as
there is no CRAN package). However, there is no comprehensive package
for R and none of the former mentioned software packages provides means
to consistently compare the quality of different methods for DR.

For many applications it can be difficult to objectively find the right
method or parameterization for the DR task. This paper presents the
dimRed and coRanking packages for the popular programming language
R. Together, they provide a standardized interface to various dimension-
ality reduction methods and quality metrics for embeddings. They are
implemented using the S4 class system of R, making the packages both
easy to use and to extend.

The design goal for these packages is to enable researchers, who may
not necessarily be experts in DR, to apply the methods in their own work
and to objectively identify the most suitable methods for their data. This
paper provides an overview of the methods collected in the packages and
contains examples as to how to use the packages.

The notation in this paper will be as follows: X = [xi]
T
1≤i≤n ∈ R

n×p,
and the observations xi ∈ R

p. These observations may be transformed
prior to the dimensionality reduction step (e.g., centering and/or stan-
dardization) resulting in X ′ = [x′

i]
T
1≤i≤n ∈ R

n×p. A DR method then

embeds each vector in X ′ onto a vector in Y = [yi]
T
1≤i≤n ∈ R

n×q with
yi ∈ R

q, ideally with q ≪ p. Some methods provide an explicit map-
ping f(x′

i) = yi. Some even offer an inverse mapping f−1(yi) = x̂′
i,

such that one can reconstruct a (usually approximate) sample from the
low-dimensional representation. For some methods, pairwise distances be-
tween points are needed, we set dij = d(xi, xj) and d̂ij = d(yi, yj), where
d is some appropriate distance function.

When referring to functions in the dimRed package or base R sim-
ply the function name is mentioned, functions from other packages are
referenced with their namespace, as with package::function.
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face are implemented in dimRed. Modified from Van Der Maaten et al. (2009).
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2 Dimensionality Reduction Methods

In the following section we do not aim for an exhaustive explanation to
every method in dimRed but rather to provide a general idea on how the
methods work. An overview and classification of the most commonly used
DR methods can be found in Figure 1.

In all methods, parameters have to be optimized or decisions have to be
made, even if it is just about the preprocessing steps of data. The dimRed

package tries to make the optimization process for parameters as easy as
possible, but, if possible, the parameter space should be narrowed down
using prior knowledge. Often decisions can be made based on theoretical
knowledge. For example, sometimes an analysis requires data to be kept in
their original scales and sometimes this is exactly what has to be avoided
as when comparing different physical units. Sometimes decisions based on
the experience of others can be made, e.g., the Gaussian kernel is probably
the most universal kernel and therefore should be tested first if there is a
choice.

All methods presented here have the embedding dimensionality, q, as
a parameter (or ndim as a parameter for embed). For methods based on
eigenvector decomposition, the result generally does not depend on the
number of dimensions, i.e., the first dimension will be the same, no matter
if we decide to calculate only two dimensions or more. If more dimensions
are added, more information is maintained, the first dimension is the most
important and higher dimensions are successively less important. This
means, that a method based on eigenvalue decomposition only has to be
run once if one wishes to compare the embedding in different dimensions.
In optimization based methods this is generally not the case, the number of
dimensions has to be chosen a priori, an embedding of 2 and 3 dimensions
may vary significantly, and there is no ordered importance of dimensions.
This means that comparing dimensions of optimization-based methods is
computationally much more expensive.

We try to give the computational complexity of the methods. Because
of the actual implementation, computation times may differ largely. R
is an interpreted language, so all parts of an algorithm that are imple-
mented in R often will tend to be slow compared to methods that call
efficient implementations in a compiled language. Methods where most
of the computing time is spent for eigenvalue decomposition do have very
efficient implementations as R uses optimized linear algebra libraries. Al-
though, eigenvalue decomposition itself does not scale very well in naive
implementations (O(n3)).

2.1 PCA

Principal Component Analysis (PCA) is the most basic technique for re-
ducing dimensions. It dates back to Pearson (1901). PCA finds a linear
projection (U) of the high dimensional space into a low dimensional space
Y = XU , maintaining maximum variance of the data. It is based on
solving the following eigenvalue problem:

(CXX − λkI)uk = 0 (1)
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where CXX = 1

n
XTX is the covariance matrix, λk and uk are the k-th

eigenvalue and eigenvector, and I is the identity matrix. The equation has
several solutions for different values of λk (leaving aside the trivial solution
uk = 0). PCA can be efficiently applied to large data sets, because it
computationally scales as O(np2 + p3), that is, it scales linearly with the
number of samples and R uses specialized linear algebra libraries for such
kind of computations.

PCA is a rotation around the origin and there exist a forward and
inverse mapping. PCA may suffer from a scale problem, i.e., when one
variable dominates the variance simply because it is in a higher scale,
to remedy this, the data can be scaled to zero mean and unit variance,
depending on the use case, if this is necessary or desired.

Base R implements PCA in the functions prcomp and princomp; but
several other implementations exist i.e., pcaMethods from Bioconductor
which implements versions of PCA that can deal with missing data. The
dimRed package wraps prcomp.

2.2 kPCA

Kernel Principal Component Analysis (kPCA) extends PCA to deal with
nonlinear dependencies among variables. The idea behind kPCA is to
map the data into a high dimensional space using a possibly non-linear
function φ and then to perform a PCA in this high dimensional space.
Some mathematical tricks are used for efficient computation.

If the columns of X are centered around 0, then the principal compo-
nents can also be computed from the inner product matrix K = XTX.
Due to this way of calculating a PCA, we do not need to explicitly map
all points into the high dimensional space and do the calculations there, it
is enough to obtain the inner product matrix or kernel matrix K ∈ R

n×n

of the mapped points (Schölkopf et al., 1998).
Here is an example calculating the kernel matrix using a Gaussian

kernel:

K = φ(xi)
Tφ(xj) = κ(xi, xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

, (2)

where σ is a length scale parameter accounting for the width of the ker-
nel. The other trick used is known as the “representers theorem.” The
interested reader is referred to Schölkopf et al. (2001).

The kPCA method is very flexible and there exist many kernels for
special purposes. The most common kernel function is the Gaussian kernel
(Equation 2). The flexibility comes at the price that the method has to
be finely tuned for the data set because some parameter combinations are
simply unsuitable for certain data. The method is not suitable for very
large data sets, because memory scales with O(n2) and computation time
with O(n3).

Diffusion Maps, Isomap, Locally Linear Embedding, and some other
techniques can be seen as special cases of kPCA. In which case, an out-
of-sample extension using the Nyström formula can be applied (Bengio
et al., 2004). This can also yield applications for bigger data, where an
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embedding is trained with a sub-sample of all data and then the data is
embedded using the Nyström formula.

Kernel PCA in R is implemented in the kernlab package using the
function kernlab::kpca, and supports a number of kernels and user de-
fined functions. For details see the help page for kernlab::kpca.

The dimRed package wraps kernlab::kpca but additionally provides
forward and inverse methods (Bakir et al., 2004) which can be used to fit
out-of-sample data or to visualize the transformation of the data space.

2.3 Classical Scaling

What today is called Classical Scaling was first introduced by Torgerson
(1952). It uses an eigenvalue decomposition of a transformed distance
matrix to find an embedding that maintains the distances of the distance
matrix. The method works because of the same reason that kPCA works,
i.e., classical scaling can be seen as a kPCA with kernel xT y. A matrix
of Euclidean distances can be transformed into an inner product matrix
by some simple transformations and therefore yields the same result as
a PCA. Classical scaling is conceptually more general than PCA in that
arbitrary distance matrices can be used, i.e., the method does not even
need the original coordinates, just a distance matrix D. Then it tries to
find an embedding Y so that d̂ij is as similar to dij as possible.

The disadvantage is that it is computationally much more demanding,
i.e., an eigenvalue decomposition of an n× n matrix has to be computed.
This step requires O(n2) memory and O(n3) computation time, while
PCA requires only the eigenvalue decomposition of a d × d matrix and
usually n ≫ d. R implements classical scaling in the cmdscale function.

The dimRed package wraps cmdscale and allows the specification of
arbitrary distance functions for calculating the distance matrix. Addi-
tionally a forward method is implemented.

2.4 Isomap

As Classical Scaling can deal with arbitrarily defined distances, Tenen-
baum et al. (2000) suggested to approximate the structure of the manifold
by using geodesic distances. In practice, a graph is created by either keep-
ing only the connections between every point and its k nearest neighbors
to produce a k-nearest neighbor graph (k-NNG), or simply by keeping
all distances smaller than a value ε producing an ε-neighborhood graph
(ε-NNG). Geodesic distances are obtained by recording the distance on
the graph and classical scaling is used to find an embedding in fewer di-
mensions. This leads to an “unfolding” of possibly convoluted structures
(see Figure 3).

Isomap’s computational cost is dominated by the eigenvalue decompo-
sition and therefore scales with O(n3). Other related techniques can use
more efficient algorithms because the distance matrix becomes sparse due
to a different preprocessing.

In R, Isomap is implemented in the vegan package. The vegan::isomap
calculates an Isomap embedding and vegan::isomapdist calculates a
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geodesic distance matrix. The dimRed package uses its own implemen-
tation. This implementation is faster mainly due to using a KD-tree for
the nearest neighbor search (from the RANN package) and to a faster
implementation for the shortest path search in the k-NNG (from the
igraph package). The implementation in dimRed also includes a forward
method that can be used to train the embedding on a subset of data points
and then use these points to approximate an embedding for the remain-
ing points. This technique is generally referred to as landmark Isomap
(De Silva and Tenenbaum, 2004).

2.5 Locally Linear Embedding

Points that lie on a manifold in a high dimensional space can be recon-
structed through linear combinations of their neighborhoods if the man-
ifold is well sampled and the neighbohoods lie on a locally linear patch.
These reconstruction weights, W , are the same in the high dimensional
space as the internal coordinates of the manifold. Locally Linear Em-
bedding (LLE; Roweis and Saul, 2000) is a technique that constructs a
weight matrix W ∈ R

n×n with elements wij so that

n
∑

i=1

∥

∥

∥

∥

xi −
n
∑

j=1

wijxj

∥

∥

∥

∥

2

(3)

is minimized under the constraint that wij = 0 if xj does not belong to the
neighborhood and the constraint that

∑n
j=1

wij = 1. Finally the embed-
ding is made in such a way that the following cost function is minimized
for Y ,

n
∑

i=1

∥

∥

∥

∥

yi −

n
∑

j=1

wijyj

∥

∥

∥

∥

2

. (4)

This can be solved using an eigenvalue decomposition.
Conceptually the method is similar to Isomap but it is computationally

much nicer because the weight matrix is sparse and there exist efficient
solvers. In R, LLE is implemented by the package lle, the embedding can
be calculated with lle::lle. Unfortunately the implementation does not
make use of the sparsity of the weight matrix W . The manifold must be
well sampled and the neighborhood size must be chosen appropriately for
LLE to give good results.

2.6 Laplacian Eigenmaps

Laplacian Eigenmaps were originally developed under the name spectral
clustering to separate non-convex clusters. Later it was also used for graph
embedding and DR (Belkin and Niyogi, 2003).

A number of variants have been proposed. First, a graph is con-
structed, usually from a distance matrix, the graph can be made sparse
by keeping only the k nearest neighbors, or by specifying an ε neighbor-
hood. Then, a similarity matrix W is calculated by using a Gaussian
kernel (see Equation 2), if c = 2σ2 = ∞, then all distances are treated
equally, the smaller c the more emphasis is given to differences in distance.
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The degree of vertex i is di =
∑n

j=1
wij and the degree matrix, D, is the

diagonal matrix with entries di. Then we can form the graph Laplacian
L = D−W and, then, there are several ways how to proceed, an overview
can be found in Luxburg (2007).

The dimRed package implements the algorithm from Belkin and Niyogi
(2003). Analogously to LLE, Laplacian eigenmaps avoid computational
complexity by creating a sparse matrix and not having to estimate the
distances between all pairs of points. Then the eigenvectors correspond-
ing to the lowest eigenvalues larger than 0 of either the matrix L or the
normalized Laplacian D−1/2LD−1/2 are computed and form the embed-
ding.

2.7 Diffusion Maps

Diffusion Maps (Coifman and Lafon, 2006) take a distance matrix as input
and calculates the transition probability matrix P of a diffusion process
between the points to approximate the manifold. Then the embedding
is done by an eigenvalue decompositon of P to calculate the coordinates
of the embedding. The algorithm for calculating Diffusion Maps shares
some elements with the way Laplacian Eigenmaps are calculated. Both
algorithms depart from the same weight matrix, Diffusion Maps calculate
the transition probability on the graph after t time steps and do the
embedding on this probability matrix.

The idea is to simulate a diffusion process between the nodes of the
graph, which is more robust to short-circuiting than the k-NNG from
Isomap (see bottom right Figure 3). Diffusion maps in R are accessi-
ble via the diffusionMap::diffuse() function, which is available in the
diffusionMap package. Additional points can be approximated into an
existing embedding using the Nyström formula (Bengio et al., 2004). The
implementation in dimRed is based on the diffusionMap::diffuse func-
tion.

2.8 non-Metric Dimensional Scaling

While Classical Scaling and derived methods (see section Classical Scal-
ing) use eigenvector decomposition to embed the data in such a way
that the given distances are maintained, non-Metric Dimensional Scal-
ing (nMDS, Kruskal, 1964a,b) uses optimization methods to reach the
same goal. Therefore a stress function,

S =

√

√

√

√

∑

i<j (dij − d̂ij)
2

∑

i<j d
2

ij

, (5)

is used, and the algorithm tries to embed yi in such a way that the order
of the dij is the same as the order of the d̂ij Because optimization methods
can fit a wide variety of problems, there are very loose limits set to the
form of the error or stress function. For instance Mahecha et al. (2007)
found that nMDS using geodesic distances can be almost as powerful as
Isomap for embedding biodiversity patterns. Because of the flexibility of
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nMDS, there is a whole package in R devoted to Multidimensional Scaling,
smacof (de Leeuw and Mair, 2009).

Several packages provide implementations for nMDS in R, for example
MASS and vegan with the functions MASS::isoMDS and vegan::monoMDS.
Related methods include Sammons Mapping which con be found as MASS::sammon.
The dimRed package wraps vegan::monoMDS.

2.9 Force Directed Methods

The data X can be considered as a graph with weighted edges, where the
weights are the distances between points. Force directed algorithms see
the edges of the graphs as springs or the result of an electric charge of the
nodes that result in an attractive or repulsive force between the nodes,
the algorithms then try to minimize the overall energy of the graph.

E =
∑

i<j

kij(dij − d̂ij)
2

, (6)

where kij is the spring constant for the spring connecting points i and j.
Graph embedding algorithms generally suffer from long running times

(though compared to other methods presented here they do not scale as
badly) and many local optima. This is why a number of methods have
been developed that try to deal with some of the shortcomings, for exam-
ple, the Kamada-Kawai (Kamada and Kawai, 1989), the Fruchtermann-
Reingold (Fruchterman and Reingold, 1991), or the DrL (Martin et al.,
2007) algorithms.

There are a number of graph embedding algorithms included in the
igraph package, they can be accessed using the igraph::layout_with_*

function family. The dimRed package only wraps the three algorithms
mentioned above; there are many others which are not interesting for
dimensionality reduction.

2.10 t-SNE

Stochastic Neighbor Embedding (SNE; Hinton and Roweis, 2003) is a
technique that minimizes the Kullback-Leibler divergence of scaled simi-
larities of the points i and j in a high dimensional space, pij , and a low
dimensional space, qij :

KL(P‖Q) =
∑

i 6=j

pij log
pij
qij

. (7)

SNE uses a Gaussian kernel (see Equation 2) to compute similarities in
a high and a low dimensional space. The t-Distributed Stochastic Neigh-
borhood Embedding (t-SNE; van der Maaten and Hinton, 2008) improves
on SNE by using a t-Distribution as a kernel in low dimensional space.
Because of the heavy-tailed t-distribution, t-SNE maintains local neigh-
borhoods of the data better and penalizes wrong embeddings of dissimilar
points. This property makes it especially suitable to represent clustered
data and complex structures in few dimensions.

The t-SNE method has one parameter, perplexity, to tune. This de-
termines the neighborhood size of the kernels used.
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The general runtime of t-SNE is O(n2), but an efficient implementation
using tree search algorithms that scales as O(n log n) exists and can be
found in the Rtsne package in R. The t-SNE implementation in dimRed

wraps the Rtsne package.
There exist a number of derived techniques for dimensionality reduc-

tion, e.g., NeRV (Venna et al., 2010) and JNE (Lee et al., 2013), that
improve results but for which there do not yet exist packages on CRAN
implementing them.

2.11 ICA

Independent Component Analysis (ICA) interprets the data X as a mix-
ture of independent signals, e.g., a number of sound sources recorded by
several microphones, and tries to “un-mix” them to find the original sig-
nals in the recorded signals. ICA is a linear rotation of the data, just as
PCA, but instead of recovering the maximum variance, it recovers statis-
tically independent components. A signal matrix S and a mixing matrix
A are estimated so that X = AS.

There are a number of algorithms for ICA, the most widely used is
fastICA (Hyvarinen, 1999) because it provides a fast and robust way to
estimate A and S. FastICA maximizes a measure for non-Gaussianity
called negentropy J (Comon, 1994). This is equivalent to minimizing
mutual information between the resulting components. Negentropy J is
defined as follows:

H(u) = −

∫

f(u) log f(Y ) du, (8)

J(u) = H(ugauss)−H(u), (9)

where u = (u1, . . . , un)
T is a random vector with density f(·) and ugauss

is a Gaussian random variable with the same covariance structure as u.
FastICA uses a very efficient approximation to calculate negentropy. Be-
cause ICA can be translated into a simple linear projection, a forward and
an inverse method can be supplied.

There are a number of packages in R that implement algorithms for
ICA, the dimRed package wraps the fastICA::fastICA() function from
fastICA.

2.12 DRR

Dimensionality Reduction via Regression is a very recent technique ex-
tending PCA (Laparra et al., 2015). Starting from a rotated (PCA) so-
lution X ′ = XU , it predicts redundant information from the remaining
components using non-linear regression.

y·i = x′
·i − fi(x

′
·1, x

′
·2, . . . , x

′
·i−1) (10)

with x·i and y·i being the loading of observations on the i-th axis. In the-
ory, any kind of regression can be used. the authors of the original paper
choose Kernel Ridge Regression (KRR; Saunders et al., 1998) because it is
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a flexible nonlinear regression technique and computational optimizations
for a fast calculation exist. DRR has another advantage over other tech-
niques presented here, because it provides an exact forward and inverse
function.

The usage of KRR also has the advantage of making the method con-
vex, here we list it under non-convex methods, because other types of
regression may make it non-convex.

Mathematically, functions are limited to map one input to a single
output point. Therefore, DRR reduces to PCA if manifolds are too com-
plex; but it seems very useful for slightly curved manifolds. The initial
rotation is important, because the result strongly depends on the order of
dimensions in high dimensional space.

DRR is implemented in the package DRR. The package provides for-
ward and inverse functions which can be used to train on a subset.

3 Quality criteria

The advantage of unsupervised learning is that one does not need to spec-
ify classes or a target variable for the data under scrutiny. Instead the
chosen algorithm arranges the input data. For example, arranged into
clusters or into a lower dimensional representation. In contrast to a su-
pervised problem, there is no natural way to directly measure the quality
of any output or to compare two methods by an objective measure like
for instance modeling efficiency or classification error. The reason is that
every method optimizes a different error function, and it would be un-
fair to compare t-SNE and PCA by means of either recovered variance or
KL-Divergence. One fair measure would be the reconstruction error, i.e.,
reconstructing the original data from a limited number of dimensions,
but as discussed above not many methods provide forward and inverse
mappings.

However, there are a series of independent estimators on the quality of
a low-dimensional embedding. The dimRed package provides a number of
quality measures which have been proposed in the literature to measure
performance of dimensionality reduction techniques.

3.1 Co-ranking matrix based measures

The co-ranking matrix (Lee and Verleysen, 2009) is a way to capture the
changes in ordinal distance. As before, let dij = d(xi, xj) be the distances
between xi and xj , i.e., in high dimensional space and d̂ij = d(yi, yj) the
distances in low dimensional space, then we can define the rank of yj with
respect to yi

r̂ij = |{k : d̂ik < d̂ij or (d̂ik = d̂ij and 1 ≤ k < j ≤ n)}|, (11)

and, analogously, the rank in high-dimensional space as:

rij = |{k : dik < dij or (dik = dij and 1 ≤ k < j ≤ n)}|, (12)

where the notation |A| denotes the number of elements in a set A. This
means that we simply replace the distances in a distance matrix column
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wise by their ranks. Therefore rij is an integer which indicates that xi is
the rij-th closest neighbor of xj in the set X.

The co-ranking matrix Q then has elements

qkl = |{(i, j) : r̂ij = k and rij = l}|, (13)

which is the 2d-histogram of the ranks. That is, qij is an integer which
counts how many points of distance rank j became rank i. In a perfect
DR, this matrix will only have non-zero entries in the diagonal; if most
of the non-zero entries are in the lower triangle, then the DR collapsed
far away points onto each other; if most of the non-zero entries are in
the upper triangle, then the DR teared close points apart. For a detailed
description of the properties of the co-ranking matrix the reader is referred
to Lueks et al. (2011).

The co-ranking matrix can be computed using function coRanking::coranking()

and can be visualized using coRanking::imageplot(). A good embedding
should scatter the values around the diagonal of the matrix. If the values
are predominantly in the lower triangle, then the embedding collapses the
original structure causing far away points to be much closer; if the values
are predominantly in the upper triangle the points from the original struc-
ture are torn apart. Nevertheless this method requires visual inspection
of the matrix. For an automated assessment of quality, a scalar value that
assigns a quality to an embedding is needed.

A number of metrics can be computed from the co-ranking matrix.
For example:

QNX(k) =
1

kn

k
∑

i=1

k
∑

j=1

qij , (14)

which is the number of points that belong to the k-th nearest neighbors
in both high- and low-dimensional space, normalized to give a maximum
of 1 (Lee and Verleysen, 2009). This quantity can be adjusted for random
embeddings, giving the Local Continuity Meta Criterion (Chen and Buja,
2009):

LCMC(k) = QNX(k)−
k

n− 1
(15)

The above measures still depend on k, but LCMC has a well defined
maximum at kmax. Two measures without parameters are then defined:

Qlocal =
1

kmax

kmax
∑

k=1

QNX(k) and (16)

Qglobal =
1

n− kmax

n−1
∑

k=kmax

QNX(k). (17)

These measure the preservation of local and global distances respectively.
The original authors advised using Qlocal over Qglobal, but this depends
on the application.
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LCMC(k) can be normalized to a maximum of 1, yielding the following
measure for a quality embedding (Lee et al., 2013):

RNX(k) =
(n− 1)QNX(k)− k

n− 1− k
, (18)

where a value of 0 corresponds to a random embedding and a value of 1 to
a perfect embedding into the k-ary neighborhood. To transform RNX(k)
into a parameterless measure, the area under the curve can be used:

AUCln k (RNX(k)) =

(

n−2
∑

k=1

RNX(k)

)/(

n−2
∑

k=1

1/k

)

. (19)

This measure is normalized to one and takes k at a log-scale. Therefore
it prefers methods that preserve local distances.

In R, the co-ranking matrix can be calculated using the the coRanking::coranking
function. The dimRed package contains the functions Q_local, Q_global,
Q_NX, LCMC, and R_NX to calculate the above quality measures in addition
to AUC_lnK_R_NX.

Calculating the co-ranking matrix is a relatively expensive operation
because it requires sorting every row of the distance matrix twice. It there-
fore scales with O(n2 log n). There is also a plotting function plot_R_NX,
which plots the RNX values with log-scaled K and adds the AUClnK to
the legend (see Figure 2).

There are a number of other measures that can be computed from a
co-ranking matrix, e.g., see Lueks et al. (2011); Lee and Verleysen (2009),
or Babaee et al. (2013).

3.2 Cophenetic correlation

An old measure originally developed to compare clustering methods in
the field of phylogenetics is cophenetic correlation (Sokal and Rohlf, 1962).
This method consists simply of the correlation between the upper or lower
triangles of the distance matrices (in dendrograms they are called cophe-
netic matrices, hence the name) in a high and low dimensional space. Ad-
ditionally the distance measure and correlation method can be varied. In
the dimRed package this is implemented in the cophenetic_correlation

function.
Some studies use a measure called “residual variance” (Tenenbaum

et al., 2000; Mahecha et al., 2007), which is defined as

1− r2(D, D̂),

where r is the Pearson correlation and D, D̂ are the distances matrices
consisting of elements dij and d̂ij respectively.

3.3 Reconstruction error

The fairest and most common way to assess the quality of a dimensionality
reduction when the method provides an inverse mapping is the reconstruc-
tion error. The dimRed package includes a function to calculate the root
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mean squared error which is defined as:

RMSE =

√

√

√

√

1

n

n
∑

i=1

d(x′
i, xi)

2 (20)

with x′
i = f−1(yi), f

−1 being the function that maps an embedded value
back to feature space.

The dimRed package provides the reconstruction_rmse and reconstruction_error

functions.

4 Test data sets

There are a number of test data sets that are often used to showcase a
dimensionality reduction technique. Common ones being the 3d S-curve
and the Swiss roll, among others. These data sets have in common that
they usually have three dimensions, and well defined manifolds. Real
world examples usually have more dimensions and often are much noisier,
the manifolds may not be well sampled and exhibit holes and large pieces
may be missing. Additionally, we cannot be sure if we can observe all the
relevant variables.

The dimRed package implements a number of test datasets that are be-
ing used in literature to benchmark methods with the function dimRed::loadDataSet().
For artificial datasets the number of points and the noise level can be ad-
justed, the function also returns the internal coordinates.

5 The dimRed Package

The dimRed package collects DR methods readily implemented in R, im-
plements missing methods and offers means to compare the quality of
embeddings. The package is open source and available under the GPL3
license. Released versions of the package are available through CRAN
(https://cran.r-project.org/package=dimRed) and development ver-
sions are hosted on GitHub (https://github.com/gdkrmr/dimRed). The
dimRed package provides a common interface and convenience functions
for a variety of different DR methods so that it is made easier to use and
compare different methods. An overview of the packages main functions
can be found in Table 1.

Internally, the package uses S4 classes but for normal usage the user
does not need to have any knowledge on the inner workings of the S4
class system in R (cf. table 2). The package contains simple conversion
functions from and to standard R-objects like a data.frame or a matrix.
The "dimRedData" class provides a container for the data to be processed.
The slot data contains a matrix with dimensions in columns and obser-
vations in rows, the slot meta may contain a data frame with additional
information, e.g., categories or other information of the data points.

Each embedding method is a class which inherits from "dimRedMethod"

which means that it contains a function to generate "dimRedResult" ob-
jects and a list of standard parameters. The class "dimRedResult" con-
tains the data in reduced dimensions, the original meta information along
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Function Description

embed Embed data using a DR method.
quality Calculate a quality score from the result of embed.
plot Plot a "dimRedData" or "dimRedResult" object,

colors the points automatically, for exploring the
data.

plot_R_NX Compares the quality of various embeddings.
dimRedMethodList Returns a character vector that contains all imple-

mented DR methods.
dimRedQualityList Returns a character vector that contains all imple-

mented quality measures.

Table 1: The main interface functions of the dimRed package.

Class Name Function

"dimRedData" Holds the data for a DR. Fed to embed(). An
as.dimRedData() methods exists for "data.frame",
"matrix", and "formula" exist.

"dimRedMethod" Virtual class, ancestor of all DR methods.
"dimRedResult" The result of embed(), the embedded data.

Table 2: The S4 classes used in the dimRed package.

with the original data, and, if possible, functions for the forward and
inverse mapping.

From a user-perspective the central function of the package is embed

which is called in the form embed(data,method,...), data can take stan-
dard R objects such as instances of "data.frame", "matrix", or "formula",
as input. The method is given as a character vector. All available methods
can be listed by calling ‘dimRedMethodList()’. Method-specific parame-
ters can be passed through ...; when no method-specific parameters are
given, defaults are chosen. The embed function returns an object of class
"dimRedResult".

For comparing different embeddings, dimRed contains the function
quality which relies on the output of embed and a method name. This
function returns a scalar quality score; a vector that contains the names
of all quality functions is returned by calling ‘dimRedQualityList()’.

For easy visual examination, the package contains plot methods for
"dimRedData" and "dimRedResult" objects in order to plot high dimen-
sional data using parallel plots and pairwise scatter plots. Automatic
coloring of data points is done using the available metadata.
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6 Examples

The comparison of different DR methods, choosing the right parameters
for a method, and the inspection of the results is simplified by dimRed.
This section contains a number of examples to highlight the usage of the
package.

To compare methods of dimensionality reduction, first a test data set is
loaded using loadDataSet, then the embed function is used for DR (embed
can also handle standard R types like matrix and data.frame). This
makes it very simple to apply different methods of DR to the same data
e.g., by defining a character vector of method names and then iterating
over these, say with lapply. For inspection, dimRed provides methods
for the plot function to visualize the resulting embedding (Figure 2 b and
d), internal coordinates of the manifold are represented by color gradients.
To visualize how well embeddings represent different neighborhood sizes,
the function plot_R_NX is used on a list of embedding results (Figure 2 c).
The plots in figure 2 are produced by the following code:

## define which methods to apply

embed_methods <- c("Isomap", "PCA")

## load test data set

data_set <- loadDataSet("3D S Curve", n = 1000)

## apply dimensionality reduction

data_emb <- lapply(embed_methods, function(x) embed(data_set, x))

names(data_emb) <- embed_methods

## figure \ref{fig:plotexample}a, the data set

plot(data_set, type = "3vars")

## figures \ref{fig:plotexample}b (Isomap) and \ref{fig:plotexample}d (PCA)

lapply(data_emb, plot, type = "2vars")

## figure \ref{fig:plotexample}c, quality analysis

plot_R_NX(data_emb)

The function plot_R_NX produces a figure that plots the neighborhood
size (k at a log-scale) against the quality measure RNX(k) (see Equation
18). This gives an overview of the general behavior of methods: if RNX

is high for low values of K, then local neighborhoods are maintained well;
if RNX is high for large values of K, then global gradients are maintained
well. It also provides a way to directly compare methods by plotting more
than one RNX curve and an overall quality of the embedding by taking
the area under the curve as an indicator for the overall quality of the
embedding (see fig 19) which is shown as a number in the legend.

Therefore we can see from Figure 2c that t-SNE is very good a main-
taining close and medium distances for the given data set, whereas PCA
is only better at maintaining the very large distances. The large distances
are dominated by the overall bent shape of the S in 3D space, while the
close distances are not affected by this bending. This is reflected in the
properties recovered by the different methods, the PCA embedding recov-
ers the S-shape, while t-SNE ignores the S-shape and recovers the inner
structure of the manifold.

Often the quality of an embedding strongly depends on the choice of
parameters, the interface of dimRed can be used to facilitate searching
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Figure 2: Comparing PCA and Isomap: (a) An S-shaped manifold, colors rep-
resent the internal coordinates of the manifold. (b) Isomap embedding, the
S-shaped manifold is unfolded. (c) RNX plotted agains neighborhood sizes,
Isomap is much better at preserving local distances and PCA is better at pre-
serving global Euclidean distances. The numbers on the legend are the AUC1/K .
(d) PCA projection of the data, the directions of maximum variance are pre-
served.
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the parameter space.
Isomap has one parameter k which determines the number of neighbors

used to construct the k-NNG. If this number is too large, then Isomap
will resemble an MDS (Figure 3 e), if the number is too small, the re-
sulting embedding contains holes (Figure 3 c). The following code finds
the optimal value, kmax, for k using the Qlocal criterion, the results are
visualized in Figure 3 a:
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Figure 3: Using dimRed and the Qlocal indicator to estimate a good value for
the parameter k in Isomap. (a) Qlocal for different values of k, the vertical red
line indicates the maximum kmax. (b) The original data set, a 2 dimensional
manifold bent in an S-shape in 3 dimensional space. Bottom row: Embeddings
and k-NNG for different values of k. (c) When k = 5, the value for k is too
small resulting in holes in the embedding, the manifold itself is still unfolded
correctly. (d) Choose k = kmax, the best representation of the original manifold
in two dimensions achievable with Isomap. (e) k = 100, too large, the k-NNG
does not approximate the manifold any more.

## Load data

ss <- loadDataSet("3D S Curve", n = 500)

## Parameter space

kk <- floor(seq(5, 100, length.out = 40))
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## Embedding over parameter space

emb <- lapply(kk, function(x) embed(ss, "Isomap", knn = x))

## Quality over embeddings

qual <- sapply(emb, function(x) quality(x, "Q_local"))

## Find best value for K

ind_max <- which.max(qual)

k_max <- kk[ind_max]

Figure 3a shows how the Qlocal criterion changes when varying the
neighborhood size k for Isomap, the gray lines in Figure 3 represent the
edges of the k-NN Graph. If the value for k is too low, the inner structure
of the manifold will still be recovered, but it will be imperfect (Figure 3c,
note that the holes appear in places that are not covered by the edges of
the k-NN Graph), therefore the Qlocal score is lower than optimal. If k is
too large, the error of the embedding is much larger due to short circuiting
and we observe a very steep drop in the Qlocal score. The short circuiting
can be observed in Figure 3e with the edges that cross the gap between
the tips and the center of the S-shape.

It is also very easy to compare across methods and quality scores. The
following code produces a matrix of quality scores and methods, where
dimRedMethodList returns a character vector with all methods. A visu-
alization of the matrix can be found in Figure 4.

DrL

HLLE

FruchtermanReingold

LaplacianEigenmaps

DiffusionMaps

AutoEncoder

FastICA

LLE

NNMF

kPCA

UMAP

tSNE

Isomap

PCA_L1

DRR

KamadaKawai

PCA

MDS

nMDS

cophenetic_correlation
AUC_lnK_R_NX
Q_global
Q_local

0.0 0.2 0.4 0.6 0.8

Figure 4: A visualization of the quality_results matrix. The methods are
ordered by mean quality score. The reconstruction error was omitted, because
a higher value means a worse embedding, while in the present methods a higher
score means a better embedding. Parameters were not tuned for the example,
therefore it should not be seen as a general quality assessment of the methods.

embed_methods <- dimRedMethodList()

quality_methods <- c("Q_local", "Q_global", "AUC_lnK_R_NX",

"cophenetic_correlation")
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scurve <- loadDataSet("3D S Curve", n = 2000)

quality_results <- matrix(

NA, length(embed_methods), length(quality_methods),

dimnames = list(embed_methods, quality_methods)

)

embedded_data <- list()

for (e in embed_methods) {

embedded_data[[e]] <- embed(scurve, e)

for (q in quality_methods)

try(quality_results[e, q] <- quality(embedded_data[[e]], q))

}

This example showcases the simplicity with which different methods
and quality criteria can be combined. Because of the strong dependencies
on parameters it is not advised to apply this kind of analysis without tun-
ing the parameters for each method separately. There is no automatized
way to tune parameters in dimRed.

7 Conclusion

This paper presents the dimRed and coRanking packages and it provides a
brief overview of the methods implemented therein. The dimRed package
is written in the R language, one of the most popular languages for data
analysis. The package is freely available from CRAN. The package is ob-
ject oriented and completely open source and therefore easily available and
extensible. Although most of the DR methods already had implementa-
tions in R, dimRed adds some new methods for dimensionality reduction,
and coRanking adds methods for an independent quality control of DR
methods to the R ecosystem. DR is a widely used technique. However,
due to the lack of easily usable tools, choosing the right method for DR
is complex and depends upon a variety of factors. The dimRed package
aims to facilitate experimentation with different techniques, parameters,
and quality measures so that choosing the right method becomes easier.
The dimRed package wants to enable the user to objectively compare
methods that rely on very different algorithmic approaches. It makes the
life of the programmer easier, because all methods are aggregated in one
place and there is a single interface and standardized classes to access the
functionality.
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