
Package ‘usethis’
December 9, 2020

Title Automate Package and Project Setup

Version 2.0.0

Description Automate package and project setup tasks that are
otherwise performed manually. This includes setting up unit testing,
test coverage, continuous integration, Git, 'GitHub', licenses,
'Rcpp', 'RStudio' projects, and more.

License MIT + file LICENSE

URL https://usethis.r-lib.org, https://github.com/r-lib/usethis

BugReports https://github.com/r-lib/usethis/issues

Depends R (>= 3.2)

Imports cli,
clipr (>= 0.3.0),
crayon,
curl (>= 2.7),
desc,
fs (>= 1.3.0),
gert (>= 1.0.2),
gh (>= 1.2.0),
glue (>= 1.3.0),
jsonlite,
lifecycle,
purrr,
rappdirs,
rlang (>= 0.4.3),
rprojroot (>= 1.2),
rstudioapi,
stats,
utils,
whisker,
withr (>= 2.3.0),
yaml

Suggests covr,
knitr,
magick,
mockr,
rmarkdown,
roxygen2,

1

https://usethis.r-lib.org
https://github.com/r-lib/usethis
https://github.com/r-lib/usethis/issues

2 R topics documented:

spelling (>= 1.2),
styler (>= 1.2.0),
testthat (>= 3.0.0)

RdMacros lifecycle

Encoding UTF-8

Language en-US

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Config/testthat/edition 3

R topics documented:
badges . 3
browse-this . 5
ci . 6
create_from_github . 8
create_package . 10
edit . 11
github-token . 12
github_actions . 14
git_branch_default . 15
git_credentials . 15
git_protocol . 16
git_sitrep . 17
git_vaccinate . 17
issue-this . 17
licenses . 18
proj_activate . 20
proj_sitrep . 20
proj_utils . 21
pull-requests . 23
rename_files . 26
rprofile-helper . 26
use_addin . 27
use_blank_slate . 27
use_build_ignore . 28
use_citation . 28
use_code_of_conduct . 29
use_coverage . 29
use_cpp11 . 30
use_cran_comments . 30
use_data . 30
use_data_table . 32
use_description . 32
use_directory . 33
use_git . 34
use_github . 34
use_github_action . 36

badges 3

use_github_labels . 38
use_github_links . 39
use_github_pages . 40
use_github_release . 41
use_git_config . 42
use_git_hook . 42
use_git_ignore . 43
use_git_remote . 43
use_jenkins . 45
use_lifecycle . 45
use_logo . 46
use_make . 46
use_namespace . 47
use_news_md . 47
use_package . 48
use_package_doc . 48
use_pipe . 49
use_pkgdown . 50
use_r . 50
use_rcpp . 51
use_readme_rmd . 52
use_release_issue . 53
use_revdep . 53
use_rmarkdown_template . 54
use_roxygen_md . 54
use_rstudio . 55
use_spell_check . 55
use_template . 56
use_testthat . 57
use_tibble . 58
use_tidy_github_actions . 58
use_tidy_thanks . 60
use_tutorial . 61
use_version . 62
use_vignette . 63
zip-utils . 64

Index 66

badges README badges

Description

These helpers produce the markdown text you need in your README to include badges that re-
port information, such as the CRAN version or test coverage, and link out to relevant external
resources. To add badges automatically ensure your badge block starts with a line containing only
<!-- badges: start --> and ends with a line containing only <!-- badges: end -->.

4 badges

Usage

use_badge(badge_name, href, src)

use_cran_badge()

use_bioc_badge()

use_lifecycle_badge(stage)

use_binder_badge(ref = git_branch_default(), urlpath = NULL)

Arguments

badge_name Badge name. Used in error message and alt text
href, src Badge link and image src
stage Stage of the package lifecycle
ref A Git branch, tag, or SHA
urlpath An optional urlpath component to add to the link, e.g. "rstudio" to open an

RStudio IDE instead of a Jupyter notebook. See the binder documentation for
additional examples.

Details

• use_badge(): a general helper used in all badge functions
• use_bioc_badge(): badge indicates BioConductor build status
• use_cran_badge(): badge indicates what version of your package is available on CRAN,

powered by https://www.r-pkg.org

• use_lifecycle_badge(): badge declares the developmental stage of a package (or argument
or function) according to https://lifecycle.r-lib.org/articles/lifecycle.html:

– Experimental
– Maturing
– Stable
– Questioning
– Superseded
– Soft-deprecated (function or argument)
– Deprecated (function or argument)
– Defunct (function or argument)

• use_binder_badge(): badge indicates that your repository can be launched in an executable
environment on https://mybinder.org/

See Also

Functions that configure continuous integration, such as use_github_actions(), also create badges.

Examples

Not run:
use_cran_badge()
use_lifecycle_badge("stable")

End(Not run)

https://mybinder.readthedocs.io/en/latest/howto/user_interface.html
https://bioconductor.org/developers/
https://www.r-pkg.org
https://lifecycle.r-lib.org/articles/lifecycle.html
https://mybinder.org/

browse-this 5

browse-this Visit important project-related web pages

Description

These functions take you to various web pages associated with a project (often, an R package) and
return the target URL(s) invisibly. To form these URLs we consult:

• Git remotes configured for the active project that appear to be hosted on a GitHub deployment

• DESCRIPTION file for the active project or the specified package. The DESCRIPTION file
is sought first in the local package library and then on CRAN.

• Fixed templates:

– Travis CI: https://travis-ci.{EXT}/{OWNER}/{PACKAGE}
– Circle CI: https://circleci.com/gh/{OWNER}/{PACKAGE}
– CRAN landing page: https://cran.r-project.org/package={PACKAGE}
– GitHub mirror of a CRAN package: https://github.com/cran/{PACKAGE} Templated

URLs aren’t checked for existence, so there is no guarantee there will be content at the
destination.

Usage

browse_package(package = NULL)

browse_project()

browse_github(package = NULL)

browse_github_issues(package = NULL, number = NULL)

browse_github_pulls(package = NULL, number = NULL)

browse_github_actions(package = NULL)

browse_travis(package = NULL, ext = c("com", "org"))

browse_circleci(package = NULL)

browse_cran(package = NULL)

Arguments

package Name of package. If NULL, the active project is targeted, regardless of whether
it’s an R package or not.

number Optional, to specify an individual GitHub issue or pull request. Can be a number
or "new".

ext Version of travis to use.

6 ci

Details

• browse_package(): Assembles a list of URLs and lets user choose one to visit in a web
browser. In a non-interactive session, returns all discovered URLs.

• browse_project(): Thin wrapper around browse_package() that always targets the active
usethis project.

• browse_github(): Visits a GitHub repository associated with the project. In the case of a
fork, you might be asked to specify if you’re interested in the source repo or your fork.

• browse_github_issues(): Visits the GitHub Issues index or one specific issue.

• browse_github_pulls(): Visits the GitHub Pull Request index or one specific pull request.

• browse_travis(): Visits the project’s page on Travis CI.

• browse_circleci(): Visits the project’s page on Circle CI.

• browse_cran(): Visits the package on CRAN, via the canonical URL.

Examples

works on the active project
browse_project()

browse_package("httr")
browse_github("gh")
browse_github_issues("fs")
browse_github_issues("fs", 1)
browse_github_pulls("curl")
browse_github_pulls("curl", 183)
browse_travis("gert", ext = "org")
browse_cran("MASS")

ci Continuous integration setup and badges

Description

Soft-deprecated

Some of these functions are now soft-deprecated since the tidyverse team has started using GitHub
Actions (GHA) for continuous integration (CI). See use_github_actions() for help configuring
GHA. GHA functionality in usethis is actively maintained and exercised, which is no longer true
for Travis-CI or AppVeyor.

Sets up third-party continuous integration (CI) services for an R package that is developed on
GitHub or, perhaps, GitLab. These functions

• Add service-specific configuration files and add them to .Rbuildignore.

• Activate a service or give the user a detailed prompt.

• Provide the markdown to insert a badge into README.

https://travis-ci.com
https://circleci.com
https://github.com/features/actions
https://github.com/features/actions

ci 7

Usage

use_travis(browse = rlang::is_interactive(), ext = c("com", "org"))

use_travis_badge(ext = c("com", "org"), repo_spec = NULL)

use_appveyor(browse = rlang::is_interactive())

use_appveyor_badge(repo_spec = NULL)

use_gitlab_ci()

use_circleci(browse = rlang::is_interactive(), image = "rocker/verse:latest")

use_circleci_badge(repo_spec = NULL)

Arguments

browse Open a browser window to enable automatic builds for the package.

ext Which travis website to use. Defaults to "com" for https://travis-ci.com. Change
to "org" for https://travis-ci.org.

repo_spec Optional GitHub repo specification in this form: owner/repo. This can usually
be inferred from the GitHub remotes of active project.

image The Docker image to use for build. Must be available on DockerHub. The
rocker/verse image includes TeXLive, pandoc, and the tidyverse packages. For
a minimal image, try rocker/r-ver. To specify a version of R, change the tag
from latest to the version you want, e.g. rocker/r-ver:3.5.3.

use_travis()

Adds a basic .travis.yml to the top-level directory of a package. This is a configuration file for
the Travis CI continuous integration service.

use_travis_badge()

Only adds the Travis CI badge. Use for a project where Travis is already configured.

use_appveyor()

Adds a basic appveyor.yml to the top-level directory of a package. This is a configuration file for
the AppVeyor continuous integration service for Windows.

use_appveyor_badge()

Only adds the AppVeyor badge. Use for a project where AppVeyor is already configured.

use_gitlab_ci()

Adds a basic .gitlab-ci.yml to the top-level directory of a package. This is a configuration file
for the GitLab CI/CD continuous integration service.

https://hub.docker.com
https://hub.docker.com/r/rocker/verse
https://hub.docker.com/r/rocker/r-ver
https://travis-ci.com/
https://travis-ci.com/
https://www.appveyor.com
https://www.appveyor.com
https://docs.gitlab.com/ee/ci/

8 create_from_github

use_circleci()

Adds a basic .circleci/config.yml to the top-level directory of a package. This is a configuration
file for the CircleCI continuous integration service.

use_circleci_badge()

Only adds the Circle CI badge. Use for a project where Circle CI is already configured.

create_from_github Create a project from a GitHub repo

Description

Creates a new local project and Git repository from a repo on GitHub, by either cloning or fork-
and-cloning. In the fork-and-clone case, create_from_github() also does additional remote and
branch setup, leaving you in the perfect position to make a pull request with pr_init(), one of
several functions that work pull requests.

create_from_github() works best when your GitHub credentials are discoverable. See below for
more about authentication.

Usage

create_from_github(
repo_spec,
destdir = NULL,
fork = NA,
rstudio = NULL,
open = rlang::is_interactive(),
protocol = git_protocol(),
host = NULL,
auth_token = deprecated(),
credentials = deprecated()

)

Arguments

repo_spec A string identifying the GitHub repo in one of these forms:

• Plain OWNER/REPO spec
• Browser URL, such as "https://github.com/OWNER/REPO"
• HTTPS Git URL, such as "https://github.com/OWNER/REPO.git"
• SSH Git URL, such as "git@github.com:OWNER/REPO.git"

In the case of a browser, HTTPS, or SSH URL, the host is extracted from the
URL. The REPO part will be the name of the new local folder, which is also a
project and Git repo.

destdir The new folder is stored here. If NULL, defaults to user’s Desktop or some
other conspicuous place. You can also set a default location using the option
usethis.destdir, e.g. options(usethis.destdir = "a/good/dir"), per-
haps saved to your .Rprofile with edit_r_profile()

https://circleci.com/
https://circleci.com/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/

create_from_github 9

fork If FALSE, we clone repo_spec. If TRUE, we fork repo_spec, clone that fork,
and do additional set up favorable for future pull requests:

• The source repo, repo_spec, is configured as the upstream remote, using
the indicated protocol.

• The local DEFAULT branch is set to track upstream/DEFAULT, where DEFAULT
is typically master or main. It is also immediately pulled, to cover the case
of a pre-existing, out-of-date fork.

If fork = NA (the default), we check your permissions on repo_spec. If you can
push, we set fork = FALSE, If you cannot, we set fork = TRUE.

rstudio Initiate an RStudio Project? Defaults to TRUE if in an RStudio session and project
has no pre-existing .Rproj file. Defaults to FALSE otherwise (but note that the
cloned repo may already be an RStudio Project, i.e. may already have a .Rproj
file).

open If TRUE, activates the new project:

• If RStudio desktop, the package is opened in a new session.
• If on RStudio server, the current RStudio project is activated.
• Otherwise, the working directory and active project is changed.

protocol One of "https" or "ssh"

host GitHub host to target, passed to the .api_url argument of gh::gh(). If un-
specified, gh defaults to "https://api.github.com", although gh’s default can be
customised by setting the GITHUB_API_URL environment variable.
For a hypothetical GitHub Enterprise instance, either "https://github.acme.com/api/v3"
or "https://github.acme.com" is acceptable.

auth_token Defunct: No longer consulted now that usethis uses the gert package for Git
operations, instead of git2r; gert relies on the credentials package for auth. The
API requests are now authorized with the token associated with the host, as
retrieved by gh::gh_token().

credentials Defunct: No longer consulted now that usethis uses the gert package for Git
operations, instead of git2r; gert relies on the credentials package for auth. The
API requests are now authorized with the token associated with the host, as
retrieved by gh::gh_token().

Git/GitHub Authentication

Many usethis functions, including those documented here, potentially interact with GitHub in two
different ways:

• Via the GitHub REST API. Examples: create a repo, a fork, or a pull request.

• As a conventional Git remote. Examples: clone, fetch, or push.

Therefore two types of auth can happen and your credentials must be discoverable. Which creden-
tials do we mean?

• A GitHub personal access token (PAT) must be discoverable by the gh package, which is used
for GitHub operations via the REST API. See gh_token_help() for more about getting and
configuring a PAT.

• If you use the HTTPS protocol for Git remotes, your PAT is also used for Git operations, such
as git push. Usethis uses the gert package for this, so the PAT must be discoverable by gert.
Generally gert and gh will discover and use the same PAT. This ability to "kill two birds with
one stone" is why HTTPS + PAT is our recommended auth strategy for those new to Git and
GitHub and PRs.

https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects

10 create_package

• If you use SSH remotes, your SSH keys must also be discoverable, in addition to your PAT.
The public key must be added to your GitHub account.

Git/GitHub credential management is covered in a dedicated article: Managing Git(Hub) Creden-
tials

See Also

• use_github() to go the opposite direction, i.e. create a GitHub repo from your local repo
• git_protocol() for background on protocol (HTTPS vs SSH)
• use_course() to download a snapshot of all files in a GitHub repo, without the need for any

local or remote Git operations

Examples

Not run:
create_from_github("r-lib/usethis")

repo_spec can be a URL
create_from_github("https://github.com/r-lib/usethis")

a URL repo_spec also specifies the host (e.g. GitHub Enterprise instance)
create_from_github("https://github.acme.com/OWNER/REPO")

End(Not run)

create_package Create a package or project

Description

These functions create an R project:

• create_package() creates an R package
• create_project() creates a non-package project, i.e. a data analysis project

Both functions can be called on an existing project; you will be asked before any existing files are
changed.

Usage

create_package(
path,
fields = list(),
rstudio = rstudioapi::isAvailable(),
roxygen = TRUE,
check_name = TRUE,
open = rlang::is_interactive()

)

create_project(
path,
rstudio = rstudioapi::isAvailable(),
open = rlang::is_interactive()

)

https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/git-credentials.html

edit 11

Arguments

path A path. If it exists, it is used. If it does not exist, it is created, provided that the
parent path exists.

fields A named list of fields to add to DESCRIPTION, potentially overriding default val-
ues. See use_description() for how you can set personalized defaults using
package options

rstudio If TRUE, calls use_rstudio() to make the new package or project into an RStu-
dio Project. If FALSE and a non-package project, a sentinel .here file is placed
so that the directory can be recognized as a project by the here or rprojroot pack-
ages.

roxygen Do you plan to use roxygen2 to document your package?

check_name Whether to check if the name is valid for CRAN and throw an error if not

open If TRUE, activates the new project:

• If RStudio desktop, the package is opened in a new session.

• If on RStudio server, the current RStudio project is activated.

• Otherwise, the working directory and active project is changed.

Value

Path to the newly created project or package, invisibly.

See Also

create_tidy_package() is a convenience function that extends create_package() by immedi-
ately applying as many of the tidyverse development conventions as possible.

edit Open configuration files

Description

• edit_r_profile() opens .Rprofile

• edit_r_environ() opens .Renviron

• edit_r_makevars() opens .R/Makevars

• edit_git_config() opens .gitconfig or .git/config

• edit_git_ignore() opens .gitignore

• edit_rstudio_snippets() opens RStudio’s snippet config for the given type.

• edit_rstudio_prefs() opens RStudio’s preference file.

https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
https://here.r-lib.org
https://rprojroot.r-lib.org

12 github-token

Usage

edit_r_profile(scope = c("user", "project"))

edit_r_environ(scope = c("user", "project"))

edit_r_buildignore(scope = c("user", "project"))

edit_r_makevars(scope = c("user", "project"))

edit_rstudio_snippets(
type = c("r", "markdown", "c_cpp", "css", "html", "java", "javascript", "python",

"sql", "stan", "tex")
)

edit_rstudio_prefs()

edit_git_config(scope = c("user", "project"))

edit_git_ignore(scope = c("user", "project"))

Arguments

scope Edit globally for the current user, or locally for the current project
type Snippet type (case insensitive text).

Details

The edit_r_*() functions consult R’s notion of user’s home directory. The edit_git_*() functions
(and usethis in general) inherit home directory behaviour from the fs package, which differs from
R itself on Windows. The fs default is more conventional in terms of the location of user-level Git
config files. See fs::path_home() for more details.

Files created by edit_rstudio_snippets() will mask, not supplement, the built-in default snip-
pets. If you like the built-in snippets, copy them and include with your custom snippets.

Value

Path to the file, invisibly.

github-token Get help with GitHub personal access tokens

Description

A personal access token (PAT) is needed for certain tasks usethis does via the GitHub API, such
as creating a repository, a fork, or a pull request. If you use HTTPS remotes, your PAT is also
used when interacting with GitHub as a conventional Git remote. These functions help you get and
manage your PAT:

• gh_token_help() guides you through token troubleshooting and setup

• create_github_token() opens a browser window to the GitHub form to generate a PAT,
with suggested scopes pre-selected. It also offers advice on storing your PAT.

https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line

github-token 13

• gitcreds::gitcreds_set() helps you register your PAT with the Git credential manager
used by your operating system. Later, other packages, such as usethis, gert, and gh can auto-
matically retrieve that PAT and use it to work with GitHub on your behalf.

Usually, the first time the PAT is retrieved in an R session, it is cached in an environment variable,
for easier reuse for the duration of that R session. After initial acquisition and storage, all of this
should happen automatically in the background.

Git/GitHub credential management is covered in a dedicated article: Managing Git(Hub) Creden-
tials

Usage

create_github_token(
scopes = c("repo", "user", "gist", "workflow"),
description = "R:GITHUB_PAT",
host = NULL

)

gh_token_help(host = NULL)

Arguments

scopes Character vector of token scopes, pre-selected in the web form. Final choices
are made in the GitHub form. Read more about GitHub API scopes at https://
docs.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/.

description Short description or nickname for the token. You might (eventually) have multi-
ple tokens on your GitHub account and a label can help you keep track of what
each token is for.

host GitHub host to target, passed to the .api_url argument of gh::gh(). If un-
specified, gh defaults to "https://api.github.com", although gh’s default can be
customised by setting the GITHUB_API_URL environment variable.
For a hypothetical GitHub Enterprise instance, either "https://github.acme.com/api/v3"
or "https://github.acme.com" is acceptable.

Details

create_github_token() has previously gone by some other names: browse_github_token()
and browse_github_pat().

Value

Nothing

See Also

gh::gh_whoami() for information on an existing token and gitcreds::gitcreds_set() and
gitcreds::gitcreds_get() for a secure way to store and retrieve your PAT.

Examples

Not run:
create_github_token()

https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/git-credentials.html
https://docs.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://docs.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/

14 github_actions

End(Not run)
Not run:
gh_token_help()

End(Not run)

github_actions GitHub Actions setup and badges

Description

Sets up continuous integration (CI) for an R package that is developed on GitHub using GitHub
Actions. CI can be used to trigger various operations for each push or pull request, such as:

• Run R CMD check on various operating systems and R versions

• Build and deploy a pkgdown site

• Determine test coverage

This family of functions

• Adds the necessary configuration files and lists them in .Rbuildignore.

• Provides the markdown to insert a badge into your README.

Usage

use_github_actions()

use_github_actions_badge(name = "R-CMD-check", repo_spec = NULL)

Arguments

name Specifies the workflow whose status the badge will report. This is the name
keyword that appears in the workflow .yaml file.

repo_spec Optional GitHub repo specification in this form: owner/repo. This can usually
be inferred from the GitHub remotes of active project.

use_github_actions()

Configures a basic R CMD check workflow on GitHub Actions by adding a standard R-CMD-check.yaml
file to the .github/workflows directory of the active project.

use_github_actions_badge()

Generates a GitHub Actions badge and that’s all. It does not configure a workflow.

See Also

• use_github_action() sets up specific, individual actions, e.g. test coverage or pkgdown
build and deploy.

• use_tidy_github_actions() sets up the standard GitHub Actions used for tidyverse pack-
ages.

https://github.com/features/actions
https://github.com/features/actions

git_branch_default 15

git_branch_default Determine default Git branch

Description

Figure out the default branch of the current Git repo.

Usage

git_branch_default()

Value

A branch name

Examples

Not run:
git_branch_default()

End(Not run)

git_credentials Produce or register credentials for git2r

Description

Defunct
In usethis v2.0.0, usethis switched from git2r to gert (+ credentials) for all Git operations. This pair
of packages (gert + credentials) is designed to discover and use the same credentials as command
line Git. As a result, a great deal of credential-handling assistance has been removed from usethis,
primarily around SSH keys.

If you have credential problems, focus your troubleshooting on getting the credentials package to
find your credentials. The introductory vignette is a good place to start.

If you use the HTTPS protocol (which we recommend), a GitHub personal access token will satisfy
all auth needs, for both Git and the GitHub API, and is therefore the easiest approach to get working.
See gh_token_help() for more.

Usage

git_credentials(protocol = deprecated(), auth_token = deprecated())

use_git_credentials(credentials = deprecated())

Arguments

protocol Deprecated.

auth_token Deprecated.

credentials Deprecated.

https://docs.ropensci.org/credentials/articles/intro.html

16 git_protocol

Value

These functions raise a warning and return an invisible NULL.

git_protocol See or set the default Git protocol

Description

Git operations that address a remote use a so-called "transport protocol". usethis supports HTTPS
and SSH. The protocol dictates the Git URL format used when usethis needs to configure the first
GitHub remote for a repo:

• protocol = "https" implies https://github.com/<OWNER>/<REPO>.git
• protocol = "ssh" implies git@github.com:<OWNER>/<REPO>.git

Two helper functions are available:

• git_protocol() reveals the protocol "in force". As of usethis v2.0.0, this defaults to "https".
You can change this for the duration of the R session with use_git_protocol(). Change
the default for all R sessions with code like this in your .Rprofile (easily editable via
edit_r_profile()):

options(usethis.protocol = "ssh")

• use_git_protocol() sets the Git protocol for the current R session

This protocol only affects the Git URL for newly configured remotes. All existing Git remote URLs
are always respected, whether HTTPS or SSH.

Usage

git_protocol()

use_git_protocol(protocol)

Arguments

protocol One of "https" or "ssh"

Value

The protocol, either "https" or "ssh"

Examples

Not run:
git_protocol()

use_git_protocol("ssh")
git_protocol()

use_git_protocol("https")
git_protocol()

End(Not run)

git_sitrep 17

git_sitrep Git/GitHub sitrep

Description

Get a situation report on your current Git/GitHub status. Useful for diagnosing problems. git_vaccinate()
adds some basic R- and RStudio-related entries to the user-level git ignore file.

Usage

git_sitrep()

Examples

Not run:
git_sitrep()

End(Not run)

git_vaccinate Vaccinate your global gitignore file

Description

Adds .DS_Store, .Rproj.user, .Rdata, .Rhistory, and .httr-oauth to your global (a.k.a. user-
level) .gitignore. This is good practice as it decreases the chance that you will accidentally leak
credentials to GitHub.

Usage

git_vaccinate()

issue-this Helpers for GitHub issues

Description

The issue_* family of functions allows you to perform common operations on GitHub issues from
within R. They’re designed to help you efficiently deal with large numbers of issues, particularly
motivated by the challenges faced by the tidyverse team.

• issue_close_community() closes an issue, because it’s not a bug report or feature request,
and points the author towards RStudio Community as a better place to discuss usage (https:
//community.rstudio.com).

• issue_reprex_needed() labels the issue with the "reprex" label and gives the author some
advice about what is needed.

https://community.rstudio.com
https://community.rstudio.com

18 licenses

Usage

issue_close_community(number, reprex = FALSE)

issue_reprex_needed(number)

Arguments

number Issue number

reprex Does the issue also need a reprex?

Saved replies

Unlike GitHub’s "saved replies", these functions can:

• Be shared between people

• Perform other actions, like labelling, or closing

• Have additional arguments

• Include randomness (like friendly gifs)

Examples

Not run:
issue_close_community(12)

issue_reprex_needed(241, reprex = TRUE)

End(Not run)

licenses License a package

Description

Adds the necessary infrastructure to declare your package as licensed with one of these popular
open source licenses:

Permissive:

• MIT: simple and permissive.

• Apache 2.0: MIT + provides patent protection.

Copyleft:

• GPL v2: requires sharing of improvements.

• GPL v3: requires sharing of improvements.

• AGPL v3: requires sharing of improvements.

• LGPL v2.1: requires sharing of improvements.

• LGPL v3: requires sharing of improvements.

Creative commons licenses appropriate for data packages:

https://choosealicense.com/licenses/mit/
https://choosealicense.com/licenses/apache-2.0/
https://choosealicense.com/licenses/gpl-2.0/
https://choosealicense.com/licenses/gpl-3.0/
https://choosealicense.com/licenses/agpl-3.0/
https://choosealicense.com/licenses/lgpl-2.1/
https://choosealicense.com/licenses/lgpl-3.0/

licenses 19

• CC0: dedicated to public domain.

• CC-BY: Free to share and adapt, must give appropriate credit.

See https://choosealicense.com for more details and other options.

Alternatively, for code that you don’t want to share with others, use_proprietary_license()
makes it clear that all rights are reserved, and the code is not open source.

Usage

use_mit_license(copyright_holder = NULL)

use_gpl_license(version = 3, include_future = TRUE)

use_agpl_license(version = 3, include_future = TRUE)

use_lgpl_license(version = 3, include_future = TRUE)

use_apache_license(version = 2, include_future = TRUE)

use_cc0_license()

use_ccby_license()

use_proprietary_license(copyright_holder)

Arguments

copyright_holder

Name of the copyright holder or holders. This defaults to "package name au-
thors"; you should only change this if you use a CLA to assign copyright to a
single entity.

version License version. This defaults to latest version all licenses.

include_future If TRUE, will license your package under the current and any potential future
versions of the license. This is generally considered to be good practice because
it means your package will automatically include "bug" fixes in licenses.

Details

CRAN does not permit you to include copies of standard licenses in your package, so these functions
save the license as LICENSE.md and add it to .Rbuildignore.

See Also

For more details, refer to the the license chapter in R Packages.

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by/4.0/
https://choosealicense.com
https://r-pkgs.org/license.html

20 proj_sitrep

proj_activate Activate a project

Description

Activates a project in usethis, R session, and (if relevant) RStudio senses. If you are in RStudio, this
will open a new RStudio session. If not, it will change the working directory and active project.

Usage

proj_activate(path)

Arguments

path Project directory

Value

Single logical value indicating if current session is modified.

proj_sitrep Report working directory and usethis/RStudio project

Description

proj_sitrep() reports

• current working directory

• the active usethis project

• the active RStudio Project

Call this function if things seem weird and you’re not sure what’s wrong or how to fix it. Usually,
all three of these should coincide (or be unset) and proj_sitrep() provides suggested commands
for getting back to this happy state.

Usage

proj_sitrep()

Value

A named list, with S3 class sitrep (for printing purposes), reporting current working directory,
active usethis project, and active RStudio Project

See Also

Other project functions: proj_utils

Examples

proj_sitrep()

proj_utils 21

proj_utils Utility functions for the active project

Description

Most use_*() functions act on the active project. If it is unset, usethis uses rprojroot to find
the project root of the current working directory. It establishes the project root by looking for a
.here file, an RStudio Project, a package DESCRIPTION, Git infrastructure, a remake.yml file, or a
.projectile file. It then stores the active project for use for the remainder of the session.

Usage

proj_get()

proj_set(path = ".", force = FALSE)

proj_path(..., ext = "")

with_project(
path = ".",
code,
force = FALSE,
setwd = TRUE,
quiet = getOption("usethis.quiet", default = FALSE)

)

local_project(
path = ".",
force = FALSE,
setwd = TRUE,
quiet = getOption("usethis.quiet", default = FALSE),
.local_envir = parent.frame()

)

Arguments

path Path to set. This path should exist or be NULL.

force If TRUE, use this path without checking the usual criteria for a project. Use
sparingly! The main application is to solve a temporary chicken-egg problem:
you need to set the active project in order to add project-signalling infrastructure,
such as initialising a Git repo or adding a DESCRIPTION file.

... character vectors, if any values are NA, the result will also be NA. The paths
follow the recycling rules used in the tibble package, namely that only length 1
arguments are recycled.

ext An optional extension to append to the generated path.

code Code to run with temporary active project

setwd Whether to also temporarily set the working directory to the active project, if it
is not NULL

quiet Whether to suppress user-facing messages, while operating in the temporary
active project

https://rprojroot.r-lib.org

22 proj_utils

.local_envir The environment to use for scoping. Defaults to current execution environment.

Details

In general, end user scripts should not contain direct calls to usethis::proj_*() utility functions.
They are internal functions that are exported for occasional interactive use or use in packages that
extend usethis. End user code should call functions in rprojroot or its simpler companion, here, to
programmatically detect a project and build paths within it.

Functions

• proj_get: Retrieves the active project and, if necessary, attempts to set it in the first place.

• proj_set: Sets the active project.

• proj_path: Builds a path within the active project returned by proj_get(). Thin wrapper
around fs::path().

• with_project: Runs code with a temporary active project and, optionally, working directory.
It is an example of the with_*() functions in withr.

• local_project: Sets an active project and, optionally, working directory until the current
execution environment goes out of scope, e.g. the end of the current function or test. It is an
example of the local_*() functions in withr.

See Also

Other project functions: proj_sitrep()

Examples

Not run:
see the active project
proj_get()

manually set the active project
proj_set("path/to/target/project")

build a path within the active project (both produce same result)
proj_path("R/foo.R")
proj_path("R", "foo", ext = "R")

build a path within SOME OTHER project
with_project("path/to/some/other/project", proj_path("blah.R"))

convince yourself that with_project() temporarily changes the project
with_project("path/to/some/other/project", print(proj_sitrep()))

End(Not run)

https://rprojroot.r-lib.org
https://here.r-lib.org
https://withr.r-lib.org
https://withr.r-lib.org

pull-requests 23

pull-requests Helpers for GitHub pull requests

Description

The pr_* family of functions is designed to make working with GitHub pull requests (PRs) as
painless as possible for both contributors and package maintainers.

To use the pr_* functions, your project must be a Git repo and have one of these GitHub remote
configurations:

• "ours": You can push to the GitHub remote configured as origin and it’s not a fork.

• "fork": You can push to the GitHub remote configured as origin, it’s a fork, and its parent
is configured as upstream. origin points to your personal copy and upstream points to the
source repo.

"Ours" and "fork" are two of several GitHub remote configurations examined in Common remote
setups in Happy Git and GitHub for the useR.

The Pull Request Helpers article walks through the process of making a pull request with the pr_*
functions.

The pr_* functions also use your Git/GitHub credentials to carry out various remote operations. See
below for more.

Usage

pr_init(branch)

pr_resume(branch = NULL)

pr_fetch(number = NULL, target = c("source", "primary"))

pr_push()

pr_pull()

pr_merge_main()

pr_view(number = NULL, target = c("source", "primary"))

pr_pause()

pr_finish(number = NULL, target = c("source", "primary"))

pr_forget()

Arguments

branch Name of a new or existing local branch. If creating a new branch, note this
should usually consist of lower case letters, numbers, and -.

number Number of PR.

https://happygitwithr.com/common-remote-setups.html
https://happygitwithr.com/common-remote-setups.html
https://usethis.r-lib.org/articles/articles/pr-functions.html

24 pull-requests

target Which repo to target? This is only a question in the case of a fork. In a fork,
there is some slim chance that you want to consider pull requests against your
fork (the primary repo, i.e. origin) instead of those against the source repo (i.e.
upstream, which is the default).

Git/GitHub Authentication

Many usethis functions, including those documented here, potentially interact with GitHub in two
different ways:

• Via the GitHub REST API. Examples: create a repo, a fork, or a pull request.

• As a conventional Git remote. Examples: clone, fetch, or push.

Therefore two types of auth can happen and your credentials must be discoverable. Which creden-
tials do we mean?

• A GitHub personal access token (PAT) must be discoverable by the gh package, which is used
for GitHub operations via the REST API. See gh_token_help() for more about getting and
configuring a PAT.

• If you use the HTTPS protocol for Git remotes, your PAT is also used for Git operations, such
as git push. Usethis uses the gert package for this, so the PAT must be discoverable by gert.
Generally gert and gh will discover and use the same PAT. This ability to "kill two birds with
one stone" is why HTTPS + PAT is our recommended auth strategy for those new to Git and
GitHub and PRs.

• If you use SSH remotes, your SSH keys must also be discoverable, in addition to your PAT.
The public key must be added to your GitHub account.

Git/GitHub credential management is covered in a dedicated article: Managing Git(Hub) Creden-
tials

For contributors

To contribute to a package, first use create_from_github("OWNER/REPO") to fork the source
repository, and then check out a local copy.

Next use pr_init() to create a branch for your PR. It is best practice to never make commits to the
default branch branch of a fork (usually named main or master), because you do not own it. A pull
request should always come from a feature branch. It will be much easier to pull upstream changes
from the fork parent if you only allow yourself to work in feature branches. It is also much easier
for a maintainer to explore and extend your PR if you create a feature branch.

Work locally, in your branch, making changes to files, and committing your work. Once you’re
ready to create the PR, run pr_push() to push your local branch to GitHub, and open a webpage
that lets you initiate the PR (or draft PR).

To learn more about the process of making a pull request, read the Pull Request Helpers vignette.

If you are lucky, your PR will be perfect, and the maintainer will accept it. You can then run
pr_finish() to delete your PR branch. In most cases, however, the maintainer will ask you to
make some changes. Make the changes, then run pr_push() to update your PR.

It’s also possible that the maintainer will contribute some code to your PR: to get those changes
back onto your computer, run pr_pull(). It can also happen that other changes have occurred in
the package since you first created your PR. You might need to merge the default branch (usually
named main or master) into your PR branch. Do that by running pr_merge_main(): this makes
sure that your PR is compatible with the primary repo’s main line of development. Both pr_pull()
and pr_merge_main() can result in merge conflicts, so be prepared to resolve before continuing.

https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/pr-functions.html

pull-requests 25

For maintainers

To download a PR locally so that you can experiment with it, run pr_fetch() and select the PR or,
if you already know its number, call pr_fetch(<pr_number>). If you make changes, run pr_push()
to push them back to GitHub. After you have merged the PR, run pr_finish() to delete the local
branch and remove the remote associated with the contributor’s fork.

Overview of all the functions

• pr_init(): Does a preparatory pull of the default branch from the source repo, to get a good
start point. Creates and checks out a new branch. Nothing is pushed to or created on GitHub
(that does not happen until the first time you call pr_push()).

• pr_resume(): Resume work on a PR by switching to an existing local branch and pulling any
changes from its upstream tracking branch, if it has one. If called with no arguments, up to 9
local branches are offered for interactive selection, with a preference for branches connected
to PRs and for branches with recent activity.

• pr_fetch(): Checks out a PR on the source repo for local exploration. If called with no
arguments, up to 9 open PRs are offered for interactive selection. This can cause a new remote
to be configured and a new local branch to be created. The local branch is configured to
track its remote counterpart. The transport protocol (HTTPS vs SSH) for any new remote is
inherited from the remote representing the source repo. pr_fetch() puts a maintainer in a
position where they can push changes into an internal or external PR via pr_push().

• pr_push(): The first time it’s called, a PR branch is pushed to GitHub and you’re taken to a
webpage where a new PR (or draft PR) can be created. This also sets up the local branch to
track its remote counterpart. Subsequent calls to pr_push() make sure the local branch has
all the remote changes and, if so, pushes local changes, thereby updating the PR.

• pr_pull(): Pulls changes from the local branch’s remote tracking branch. If a maintainer has
extended your PR, this is how you bring those changes back into your local work.

• pr_merge_main(): Pulls changes from the default branch of the source repo into the current
local branch. This can be used when the local branch is the default branch or when it’s a PR
branch.

• pr_pause(): Makes sure you’re up-to-date with any remote changes in the PR. Then switches
back to the default branch (usually named main or master) and pulls from the source repo.

• pr_view(): Visits the PR associated with the current branch in the browser (default) or the
specific PR identified by number. (FYI browse_github_pulls() is a handy way to visit the
list of all PRs for the current project.)

• pr_forget(): Does local clean up when the current branch is an actual or notional PR that you
want to abandon. Maybe you initiated it yourself, via pr_init(), or you used pr_fetch() to
explore a PR from GitHub. Only does local operations: does not update or delete any remote
branches, nor does it close any PRs. Alerts the user to any uncommitted or unpushed work
that is at risk of being lost. If user chooses to proceed, switches back to the default branch,
pulls changes from source repo, and deletes local PR branch. Any associated Git remote is
deleted, if the "forgotten" PR was the only branch using it.

• pr_finish(): Does post-PR clean up, but does NOT actually merge or close a PR (maintainer
should do this in the browser). If number is not given, infers the PR from the upstream tracking
branch of the current branch. If number is given, it does not matter whether the PR exists
locally. If PR exists locally, alerts the user to uncommitted or unpushed changes, then switches
back to the default branch, pulls changes from source repo, and deletes local PR branch. If the
PR came from an external fork, any associated Git remote is deleted, provided it’s not in use
by any other local branches. If the PR has been merged and user has permission, deletes the
remote branch (this is the only remote operation that pr_finish() potentially does).

26 rprofile-helper

Examples

Not run:
pr_fetch(123)

End(Not run)

rename_files Automatically rename paired R/ and test/ files

Description

• Moves R/{old}.R to R/{new}.R
• Moves tests/testthat/test-{old}.R to tests/testthat/test-{new}.R
• Moves tests/testthat/test-{old}-*.* to tests/testthat/test-{new}-*.* and updates paths in the test

file.
• Removes context() calls from the test file, which are unnecessary (and discouraged) as of

testthat v2.1.0.
This is a potentially dangerous operation, so you must be using Git in order to use this function.

Usage

rename_files(old, new)

Arguments

old, new Old and new file names (with or without extensions).

rprofile-helper Helpers to make useful changes to .Rprofile

Description

All functions open your .Rprofile and give you the code you need to paste in.

• use_devtools(): makes devtools available in interactive sessions.
• use_usethis(): makes usethis available in interactive sessions.
• use_reprex(): makes reprex available in interactive sessions.
• use_conflicted(): makes conflicted available in interactive sessions.
• use_partial_warnings(): warns on partial matches.

Usage

use_conflicted()

use_reprex()

use_usethis()

use_devtools()

use_partial_warnings()

use_addin 27

use_addin Add minimal RStudio Addin binding

Description

This function helps you add a minimal RStudio Addin binding to inst/rstudio/addins.dcf.

Usage

use_addin(addin = "new_addin", open = rlang::is_interactive())

Arguments

addin Name of the addin function, which should be defined in the R folder.

open Open the newly created file for editing? Happens in RStudio, if applicable, or
via utils::file.edit() otherwise.

use_blank_slate Don’t save/load user workspace between sessions

Description

R can save and reload the user’s workspace between sessions via an .RData file in the current
directory. However, long-term reproducibility is enhanced when you turn this feature off and clear
R’s memory at every restart. Starting with a blank slate provides timely feedback that encourages
the development of scripts that are complete and self-contained. More detail can be found in the
blog post Project-oriented workflow.

Usage

use_blank_slate(scope = c("user", "project"))

Arguments

scope Edit globally for the current user, or locally for the current project

https://rstudio.github.io/rstudioaddins/
https://www.tidyverse.org/blog/2017/12/workflow-vs-script/

28 use_citation

use_build_ignore Add files to .Rbuildignore

Description

.Rbuildignore has a regular expression on each line, but it’s usually easier to work with specific
file names. By default, use_build_ignore() will (crudely) turn a filename into a regular expres-
sion that will only match that path. Repeated entries will be silently removed.

use_build_ignore() is designed to ignore individual files. If you want to ignore all files with
a given extension, consider providing an "as-is" regular expression, using escape = FALSE; see
examples.

Usage

use_build_ignore(files, escape = TRUE)

Arguments

files Character vector of path names.

escape If TRUE, the default, will escape . to \\. and surround with ^ and $.

Examples

Not run:
ignore all Excel files
use_build_ignore("[.]xlsx$", escape = FALSE)

End(Not run)

use_citation Create a CITATION template

Description

Use this if you want to encourage users of your package to cite an article or book.

Usage

use_citation()

use_code_of_conduct 29

use_code_of_conduct Add a code of conduct

Description

Adds a CODE_OF_CONDUCT.md file to the active project and lists in .Rbuildignore, in the case of a
package. The goal of a code of conduct is to foster an environment of inclusiveness, and to explicitly
discourage inappropriate behaviour. The template comes from https://www.contributor-covenant.
org, version 2: https://www.contributor-covenant.org/version/2/0/code_of_conduct/.

Usage

use_code_of_conduct(path = NULL)

Arguments

path Path of the directory to put CODE_OF_CONDUCT.md in, relative to the active project.
Passed along to use_directory(). Default is to locate at top-level, but .github/
is also common.

Details

If your package is going to CRAN, the link to the CoC in your README must be an absolute
link to a rendered website as CODE_OF_CONDUCT.md is not included in the package sent to CRAN.
use_code_of_conduct() will automatically generate this link if (1) you use pkgdown and (2)
have set the url field in _pkgdown.yml; otherwise it will link to a copy of the CoC on https:
//www.contributor-covenant.org.

use_coverage Test coverage

Description

Adds test coverage reporting to a package, using either Codecov (https://codecov.io) or Coveralls
(https://coveralls.io).

Usage

use_coverage(type = c("codecov", "coveralls"), repo_spec = NULL)

use_covr_ignore(files)

Arguments

type Which web service to use.

repo_spec Optional GitHub repo specification in this form: owner/repo. This can usually
be inferred from the GitHub remotes of active project.

files Character vector of file globs.

https://www.contributor-covenant.org
https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct/
https://www.contributor-covenant.org
https://www.contributor-covenant.org

30 use_data

use_cpp11 Use C++ via the cpp11 package

Description

Adds infrastructure needed to use the cpp11 package, a header-only R package that helps R package
developers handle R objects with C++ code. compiled code:

• Creates src/

• Adds cpp11 to DESCRIPTION

• Creates src/code.cpp, an initial placeholder .cpp file

Usage

use_cpp11()

use_cran_comments CRAN submission comments

Description

Creates cran-comments.md, a template for your communications with CRAN when submitting a
package. The goal is to clearly communicate the steps you have taken to check your package on a
wide range of operating systems. If you are submitting an update to a package that is used by other
packages, you also need to summarize the results of your reverse dependency checks.

Usage

use_cran_comments(open = rlang::is_interactive())

Arguments

open Open the newly created file for editing? Happens in RStudio, if applicable, or
via utils::file.edit() otherwise.

use_data Create package data

Description

use_data() makes it easy to save package data in the correct format. I recommend you save
scripts that generate package data in data-raw: use use_data_raw() to set it up. You also need to
document exported datasets.

https://cpp11.r-lib.org

use_data 31

Usage

use_data(
...,
internal = FALSE,
overwrite = FALSE,
compress = "bzip2",
version = 2

)

use_data_raw(name = "DATASET", open = rlang::is_interactive())

Arguments

... Unquoted names of existing objects to save.

internal If FALSE, saves each object in its own .rda file in the data/ directory. These data
files bypass the usual export mechanism and are available whenever the package
is loaded (or via data() if LazyData is not true).
If TRUE, stores all objects in a single R/sysdata.rda file. Objects in this file
follow the usual export rules. Note that this means they will be exported if you
are using the common exportPattern() rule which exports all objects except
for those that start with ..

overwrite By default, use_data() will not overwrite existing files. If you really want to
do so, set this to TRUE.

compress Choose the type of compression used by save(). Should be one of "gzip",
"bzip2", or "xz".

version The serialization format version to use. The default, 2, was the default format
from R 1.4.0 to 3.5.3. Version 3 became the default from R 3.6.0 and can only
be read by R versions 3.5.0 and higher.

name Name of the dataset to be prepared for inclusion in the package.

open Open the newly created file for editing? Happens in RStudio, if applicable, or
via utils::file.edit() otherwise.

See Also

The data chapter of R Packages.

Examples

Not run:
x <- 1:10
y <- 1:100

use_data(x, y) # For external use
use_data(x, y, internal = TRUE) # For internal use

End(Not run)
Not run:
use_data_raw("daisy")

End(Not run)

https://r-pkgs.org/data.html
https://r-pkgs.org

32 use_description

use_data_table Prepare for importing data.table

Description

Questioning
use_data_table facilitates importing the data.table package by handling up-front some common
set-up tasks for using it in your package.

This function does two main things:

1. Import the entire data.table namespace (with @import).
2. Block the usage of data.table as a dependency (DESCRIPTION field Depends); data.table

should be used as an imported or suggested package only. See this discussion.

Usage

use_data_table()

use_description Create or modify a DESCRIPTION file

Description

use_description() creates a DESCRIPTION file. Although mostly associated with R packages, a
DESCRIPTION file can also be used to declare dependencies for a non-package projects. Within such
a project, devtools::install_deps() can then be used to install all the required packages. Note
that, by default, use_decription() checks for a CRAN-compliant package name. You can turn
this off with check_name = FALSE.

usethis consults the following sources, in this order, to set DESCRIPTION fields:

• fields argument of create_package() or use_description()
• getOption("usethis.description")

• Defaults built into usethis

The fields discovered via options or the usethis package can be viewed with use_description_defaults().

If you create a lot of packages, consider storing personalized defaults as a named list in an option
named "usethis.description". Here’s an example of code to include in .Rprofile, which can
be opened via edit_r_profile():

options(
usethis.description = list(
`Authors@R` = 'person("Jane", "Doe", email = "jane@example.com",

role = c("aut", "cre"),
comment = c(ORCID = "YOUR-ORCID-ID"))',

License = "MIT + file LICENSE",
Language = "es"

)
)

Prior to usethis v2.0.0, getOption("devtools.desc") was consulted for backwards compatibility,
but now only the "usethis.description" option is supported.

https://github.com/Rdatatable/data.table/issues/3076

use_directory 33

Usage

use_description(fields = list(), check_name = TRUE, roxygen = TRUE)

use_description_defaults(package = NULL, roxygen = TRUE, fields = list())

Arguments

fields A named list of fields to add to DESCRIPTION, potentially overriding default val-
ues. See use_description() for how you can set personalized defaults using
package options

check_name Whether to check if the name is valid for CRAN and throw an error if not
roxygen If TRUE, sets RoxygenNote to current roxygen2 version
package Package name

See Also

The description chapter of R Packages

Examples

Not run:
use_description()

use_description(fields = list(Language = "es"))

use_description_defaults()

End(Not run)

use_directory Use a directory

Description

use_directory() creates a directory (if it does not already exist) in the project’s top-level directory.
This function powers many of the other use_ functions such as use_data() and use_vignette().

Usage

use_directory(path, ignore = FALSE)

Arguments

path Path of the directory to create, relative to the project.
ignore Should the newly created file be added to .Rbuildignore?

Examples

Not run:
use_directory("inst")

End(Not run)

https://r-pkgs.org/description.html
https://r-pkgs.org

34 use_github

use_git Initialise a git repository

Description

use_git() initialises a Git repository and adds important files to .gitignore. If user consents, it
also makes an initial commit.

Usage

use_git(message = "Initial commit")

Arguments

message Message to use for first commit.

See Also

Other git helpers: use_git_config(), use_git_hook(), use_git_ignore()

Examples

Not run:
use_git()

End(Not run)

use_github Connect a local repo with GitHub

Description

use_github() takes a local project and:

• Checks that the initial state is good to go:

– Project is already a Git repo
– Current branch is the default branch, e.g. master or main
– No uncommitted changes
– No pre-existing origin remote

• Creates an associated repo on GitHub

• Adds that GitHub repo to your local repo as the origin remote

• Makes an initial push to GitHub

• Calls use_github_links(), if the project is an R package

• Configures origin/DEFAULT to be the upstream branch of the local DEFAULT branch, e.g.
master or main

See below for the authentication setup that is necessary for all of this to work.

use_github 35

Usage

use_github(
organisation = NULL,
private = FALSE,
protocol = git_protocol(),
host = NULL,
auth_token = deprecated(),
credentials = deprecated()

)

Arguments

organisation If supplied, the repo will be created under this organisation, instead of the login
associated with the GitHub token discovered for this host. The user’s role and
the token’s scopes must be such that you have permission to create repositories
in this organisation.

private If TRUE, creates a private repository.
protocol One of "https" or "ssh"
host GitHub host to target, passed to the .api_url argument of gh::gh(). If un-

specified, gh defaults to "https://api.github.com", although gh’s default can be
customised by setting the GITHUB_API_URL environment variable.
For a hypothetical GitHub Enterprise instance, either "https://github.acme.com/api/v3"
or "https://github.acme.com" is acceptable.

auth_token, credentials

Defunct: No longer consulted now that usethis uses the gert package for Git
operations, instead of git2r; gert relies on the credentials package for auth. The
API requests are now authorized with the token associated with the host, as
retrieved by gh::gh_token().

Git/GitHub Authentication

Many usethis functions, including those documented here, potentially interact with GitHub in two
different ways:

• Via the GitHub REST API. Examples: create a repo, a fork, or a pull request.
• As a conventional Git remote. Examples: clone, fetch, or push.

Therefore two types of auth can happen and your credentials must be discoverable. Which creden-
tials do we mean?

• A GitHub personal access token (PAT) must be discoverable by the gh package, which is used
for GitHub operations via the REST API. See gh_token_help() for more about getting and
configuring a PAT.

• If you use the HTTPS protocol for Git remotes, your PAT is also used for Git operations, such
as git push. Usethis uses the gert package for this, so the PAT must be discoverable by gert.
Generally gert and gh will discover and use the same PAT. This ability to "kill two birds with
one stone" is why HTTPS + PAT is our recommended auth strategy for those new to Git and
GitHub and PRs.

• If you use SSH remotes, your SSH keys must also be discoverable, in addition to your PAT.
The public key must be added to your GitHub account.

Git/GitHub credential management is covered in a dedicated article: Managing Git(Hub) Creden-
tials

https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/git-credentials.html

36 use_github_action

Examples

Not run:
pkgpath <- file.path(tempdir(), "testpkg")
create_package(pkgpath)

now, working inside "testpkg", initialize git repository
use_git()

create github repository and configure as git remote
use_github()

End(Not run)

use_github_action Use a specific GitHub Actions workflow

Description

Configure an individual, specific GitHub Actions workflow, either one of the examples from r-
lib/actions/examples or a custom workflow given by the url parameter.

Usage

use_github_action(
name,
url = NULL,
save_as = NULL,
ignore = TRUE,
open = FALSE

)

use_github_action_check_release(
save_as = "R-CMD-check.yaml",
ignore = TRUE,
open = FALSE

)

use_github_action_check_standard(
save_as = "R-CMD-check.yaml",
ignore = TRUE,
open = FALSE

)

use_github_action_check_full(
save_as = "R-CMD-check.yaml",
ignore = TRUE,
open = FALSE,
repo_spec = NULL

)

use_github_action_pr_commands(

https://github.com/features/actions
https://github.com/r-lib/actions/tree/master/examples
https://github.com/r-lib/actions/tree/master/examples

use_github_action 37

save_as = "pr-commands.yaml",
ignore = TRUE,
open = FALSE

)

Arguments

name Name of the workflow file, with or without a .yaml extension.

url The full URL to the .yaml file. By default, the corresponding workflow in
https://github.com/r-lib/actions will be used.

save_as Name of the workflow file. Defaults to fs::path_file(url) for use_github_action().

ignore Should the newly created file be added to .Rbuildignore?

open Open the newly created file for editing? Happens in RStudio, if applicable, or
via utils::file.edit() otherwise.

repo_spec Optional GitHub repo specification in this form: owner/repo. This can usually
be inferred from the GitHub remotes of active project.

use_github_action_check_release()

This workflow installs the latest release of R on macOS and runs R CMD check via the rcmdcheck
package.

use_github_action_check_standard()

This workflow runs R CMD check via the rcmdcheck package on the three major operating sys-
tems (linux, macOS, and Windows) on the latest release of R and on R-devel. This workflow is
appropriate for a package that is (or will hopefully be) on CRAN or Bioconductor.

use_github_action_check_full()

This workflow runs R CMD check at least once on each of the three major operating systems
(linux, macOS, and Windows) and on the current release, devel, and four previous versions of R.
This is how the tidyverse team checks its packages, but it may be overkill for less widely used
packages. Consider using the more streamlined workflows set up by use_github_actions() or
use_github_action_check_standard().

use_github_action_pr_commands()

This workflow enables the use of two R-specific commands in pull request issue comments:

• /document to run roxygen2::roxygenise() and update the PR
• /style to run styler::style_pkg() and update the PR

See Also

github_actions for generic workflows and badge generation.

https://github.com/r-lib/actions
https://github.com/r-lib/rcmdcheck
https://github.com/r-lib/rcmdcheck

38 use_github_labels

use_github_labels Manage GitHub issue labels

Description

use_github_labels() can create new labels, update colours and descriptions, and optionally
delete GitHub’s default labels (if delete_default = TRUE). It will never delete labels that have
associated issues.

use_tidy_labels() calls use_github_labels() with tidyverse conventions powered by tidy_labels(),
tidy_labels_rename(), tidy_label_colours() and tidy_label_descriptions().

Usage

use_github_labels(
repo_spec = deprecated(),
labels = character(),
rename = character(),
colours = character(),
descriptions = character(),
delete_default = FALSE,
host = deprecated(),
auth_token = deprecated()

)

use_tidy_labels(
repo_spec = deprecated(),
host = deprecated(),
auth_token = deprecated()

)

tidy_labels()

tidy_labels_rename()

tidy_label_colours()

tidy_label_descriptions()

Arguments

repo_spec, host, auth_token

Defunct: These arguments are now deprecated and will be removed in the fu-
ture. Any input provided via these arguments is not used. The target repo, host,
and auth token are all now determined from the current project’s Git remotes.

labels A character vector giving labels to add.
rename A named vector with names giving old names and values giving new names.
colours, descriptions

Named character vectors giving hexadecimal colours (like e02a2a) and longer
descriptions. The names should match label names, and anything unmatched
will be left unchanged. If you create a new label, and don’t supply colours, it
will be given a random colour.

use_github_links 39

delete_default If TRUE, removes GitHub default labels that do not appear in the labels vector
and that do not have associated issues.

Label usage

Labels are used as part of the issue-triage process, designed to minimise the time spent re-reading
issues. The absence of a label indicates that an issue is new, and has yet to be triaged.

• reprex indicates that an issue does not have a minimal reproducible example, and that a reply
has been sent requesting one from the user.

• bug indicates an unexpected problem or unintended behavior.

• feature indicates a feature request or enhancement.

• docs indicates an issue with the documentation.

• wip indicates that someone is working on it or has promised to.
• good first issue indicates a good issue for first-time contributors.
• help wanted indicates that a maintainer wants help on an issue.

Examples

Not run:
typical use in, e.g., a new tidyverse project
use_github_labels(delete_default = TRUE)

create labels without changing colours/descriptions
use_github_labels(

labels = c("foofy", "foofier", "foofiest"),
colours = NULL,
descriptions = NULL

)

change descriptions without changing names/colours
use_github_labels(

labels = NULL,
colours = NULL,
descriptions = c("foofiest" = "the foofiest issue you ever saw")

)

End(Not run)

use_github_links Use GitHub links in URL and BugReports

Description

Populates the URL and BugReports fields of a GitHub-using R package with appropriate links. The
GitHub repo to link to is determined from the current project’s GitHub remotes:

• If we are not working with a fork, this function expects origin to be a GitHub remote and the
links target that repo.

• If we are working in a fork, this function expects to find two GitHub remotes: origin (the
fork) and upstream (the fork’s parent) remote. In an interactive session, the user can confirm
which repo to use for the links. In a noninteractive session, links are formed using upstream.

40 use_github_pages

Usage

use_github_links(
auth_token = deprecated(),
host = deprecated(),
overwrite = FALSE

)

Arguments

host, auth_token

Defunct: No longer consulted now that usethis consults the current project’s
GitHub remotes to get the host and then relies on gh to discover an appropriate
token.

overwrite By default, use_github_links() will not overwrite existing fields. Set to TRUE
to overwrite existing links.

Examples

Not run:
use_github_links()

End(Not run)

use_github_pages Configure a GitHub Pages site

Description

Activates or reconfigures a GitHub Pages site for a project hosted on GitHub. This function antici-
pates two specific usage modes:

• Publish from the root directory of a gh-pages branch, which is assumed to be only (or at
least primarily) a remote branch. Typically the gh-pages branch is managed by an automatic
"build and deploy" job, such as the one configured by use_github_action("pkgdown").

• Publish from the "/docs" directory of a "regular" branch, probably the repo’s default branch.
The user is assumed to have a plan for how they will manage the content below "/docs".

Usage

use_github_pages(branch = "gh-pages", path = "/", cname = NA)

Arguments

branch, path Branch and path for the site source. The default of branch = "gh-pages" and
path = "/" reflects strong GitHub support for this configuration: when a gh-pages
branch is first created, it is automatically published to Pages, using the source
found in "/". If a gh-pages branch does not yet exist on the host, use_github_pages()
creates an empty, orphan remote branch.
The most common alternative is to use the repo’s default branch, coupled with
path = "/docs". It is the user’s responsibility to ensure that this branch pre-
exists on the host.

use_github_release 41

Note that GitHub does not support an arbitrary path and, at the time of writing,
only "/" or "/docs" are accepted.

cname Optional, custom domain name. The NA default means "don’t set or change this",
whereas a value of NULL removes any previously configured custom domain.
Note that this can add or modify a CNAME file in your repository. If you are
using Pages to host a pkgdown site, it is better to specify its URL in the pkgdown
config file and let pkgdown manage CNAME.

Value

Site metadata returned by the GitHub API, invisibly

See Also

• use_tidy_pkgdown() combines use_github_pages() with other functions to fully config-
ure a pkgdown site

• https://docs.github.com/en/free-pro-team@latest/github/working-with-github-pages

• https://docs.github.com/en/free-pro-team@latest/rest/reference/repos#pages

Examples

Not run:
use_github_pages()
use_github_pages(branch = git_branch_default(), path = "/docs")

End(Not run)

use_github_release Draft a GitHub release

Description

Creates a draft GitHub release for the current package using the current version and NEWS.md. If
you are comfortable that it is correct, you will need to publish the release from GitHub. It also
deletes CRAN-RELEASE and checks that you’ve pushed all commits to GitHub.

Usage

use_github_release(host = deprecated(), auth_token = deprecated())

Arguments

host, auth_token

Defunct: No longer consulted now that usethis allows the gh package to lookup
a token based on a URL determined from the current project’s GitHub remotes.

https://docs.github.com/en/free-pro-team@latest/github/working-with-github-pages
https://docs.github.com/en/free-pro-team@latest/rest/reference/repos#pages

42 use_git_hook

use_git_config Configure Git

Description

Sets Git options, for either the user or the project ("global" or "local", in Git terminology). Wraps
gert::git_config_set() and gert::git_config_global_set(). To inspect Git config, see
gert::git_config().

Usage

use_git_config(scope = c("user", "project"), ...)

Arguments

scope Edit globally for the current user, or locally for the current project

... Name-value pairs, processed as <dynamic-dots>.

Value

Invisibly, the previous values of the modified components, as a named list.

See Also

Other git helpers: use_git_hook(), use_git_ignore(), use_git()

Examples

Not run:
set the user's global user.name and user.email
use_git_config(user.name = "Jane", user.email = "jane@example.org")

set the user.name and user.email locally, i.e. for current repo/project
use_git_config(

scope = "project",
user.name = "Jane",
user.email = "jane@example.org"

)

End(Not run)

use_git_hook Add a git hook

Description

Sets up a git hook using specified script. Creates hook directory if needed, and sets correct permis-
sions on hook.

use_git_ignore 43

Usage

use_git_hook(hook, script)

Arguments

hook Hook name. One of "pre-commit", "prepare-commit-msg", "commit-msg", "post-
commit", "applypatch-msg", "pre-applypatch", "post-applypatch", "pre-rebase",
"post-rewrite", "post-checkout", "post-merge", "pre-push", "pre-auto-gc".

script Text of script to run

See Also

Other git helpers: use_git_config(), use_git_ignore(), use_git()

use_git_ignore Tell Git to ignore files

Description

Tell Git to ignore files

Usage

use_git_ignore(ignores, directory = ".")

Arguments

ignores Character vector of ignores, specified as file globs.

directory Directory relative to active project to set ignores

See Also

Other git helpers: use_git_config(), use_git_hook(), use_git()

use_git_remote Configure and report Git remotes

Description

Two helpers are available:

• use_git_remote() sets the remote associated with name to url.

• git_remotes() reports the configured remotes, similar to git remote -v.

Usage

use_git_remote(name = "origin", url, overwrite = FALSE)

git_remotes()

44 use_git_remote

Arguments

name A string giving the short name of a remote.

url A string giving the url of a remote.

overwrite Logical. Controls whether an existing remote can be modified.

Value

Named list of Git remotes.

Examples

Not run:
see current remotes
git_remotes()

add new remote named 'foo', a la `git remote add <name> <url>`
use_git_remote(name = "foo", url = "https://github.com/<OWNER>/<REPO>.git")

remove existing 'foo' remote, a la `git remote remove <name>`
use_git_remote(name = "foo", url = NULL, overwrite = TRUE)

change URL of remote 'foo', a la `git remote set-url <name> <newurl>`
use_git_remote(

name = "foo",
url = "https://github.com/<OWNER>/<REPO>.git",
overwrite = TRUE

)

Scenario: Fix remotes when you cloned someone's repo, but you should
have fork-and-cloned (in order to make a pull request).

Store origin = main repo's URL, e.g., "git@github.com:<OWNER>/<REPO>.git"
upstream_url <- git_remotes()[["origin"]]

IN THE BROWSER: fork the main GitHub repo and get your fork's remote URL
my_url <- "git@github.com:<ME>/<REPO>.git"

Rotate the remotes
use_git_remote(name = "origin", url = my_url)
use_git_remote(name = "upstream", url = upstream_url)
git_remotes()

Scenario: Add upstream remote to a repo that you fork-and-cloned, so you
can pull upstream changes.
Note: If you fork-and-clone via `usethis::create_from_github()`, this is
done automatically!

Get URL of main GitHub repo, probably in the browser
upstream_url <- "git@github.com:<OWNER>/<REPO>.git"
use_git_remote(name = "upstream", url = upstream_url)

End(Not run)

use_jenkins 45

use_jenkins Create Jenkinsfile for Jenkins CI Pipelines

Description

use_jenkins() adds a basic Jenkinsfile for R packages to the project root directory. The Jenkinsfile
stages take advantage of calls to make, and so calling this function will also run use_make() if a
Makefile does not already exist at the project root.

Usage

use_jenkins()

See Also

The documentation on Jenkins Pipelines.

use_make()

use_lifecycle Use lifecycle badges

Description

This helper copies the lifecycle badges in to the man/figures folder of your package. It also
reminds you of the syntax to use them in the documentation of individual functions or arguments.

See the getting started vignette of the lifecycle package.

Usage

use_lifecycle()

See Also

use_lifecycle_badge() to signal the global lifecycle stage of your package as a whole.

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://lifecycle.r-lib.org/articles/lifecycle.html
https://www.tidyverse.org/lifecycle/

46 use_make

use_logo Use a package logo

Description

This function helps you use a logo in your package:

• Enforces a specific size

• Stores logo image file at man/figures/logo.png

• Produces the markdown text you need in README to include the logo

Usage

use_logo(img, geometry = "240x278", retina = TRUE)

Arguments

img The path to an existing image file

geometry a magick::geometry string specifying size. The default assumes that you have a
hex logo using spec from http://hexb.in/sticker.html.

retina TRUE, the default, scales the image on the README, assuming that geometry is
double the desired size.

Examples

Not run:
use_logo("usethis.png")

End(Not run)

use_make Create Makefile

Description

use_make() adds a basic Makefile to the project root directory.

Usage

use_make()

See Also

The documentation for GNU Make.

http://hexb.in/sticker.html
https://www.gnu.org/software/make/manual/html_node/

use_namespace 47

use_namespace Use a basic NAMESPACE

Description

If roxygen is TRUE generates an empty NAMESPACE that exports nothing; you’ll need to explicitly
export functions with @export. If roxygen is FALSE, generates a default NAMESPACE that exports all
functions except those that start with ..

Usage

use_namespace(roxygen = TRUE)

Arguments

roxygen Do you plan to manage NAMESPACE with roxygen2?

See Also

The namespace chapter of R Packages.

use_news_md Create a simple NEWS.md

Description

This creates a basic NEWS.md in the root directory.

Usage

use_news_md(open = rlang::is_interactive())

Arguments

open Open the newly created file for editing? Happens in RStudio, if applicable, or
via utils::file.edit() otherwise.

See Also

The important files section of R Packages.

https://r-pkgs.org/namespace.html
https://r-pkgs.org
https://r-pkgs.org/release.html#important-files
https://r-pkgs.org

48 use_package_doc

use_package Depend on another package

Description

use_package() adds a CRAN package dependency to DESCRIPTION and offers a little advice about
how to best use it. use_dev_package() adds a dependency on an in-development package, adding
the dev repo to Remotes so it will be automatically installed from the correct location.

Usage

use_package(package, type = "Imports", min_version = NULL)

use_dev_package(package, type = "Imports", remote = NULL)

Arguments

package Name of package to depend on.

type Type of dependency: must be one of "Imports", "Depends", "Suggests", "En-
hances", or "LinkingTo" (or unique abbreviation). Matching is case insensitive.

min_version Optionally, supply a minimum version for the package. Set to TRUE to use the
currently installed version.

remote By default, an OWNER/REPO GitHub remote is inserted. Optionally, you can sup-
ply a character string to specify the remote, e.g. "gitlab::jimhester/covr",
using any syntax supported by the remotes package.

See Also

The dependencies section of R Packages.

Examples

Not run:
use_package("ggplot2")
use_package("dplyr", "suggests")
use_dev_package("glue")

End(Not run)

use_package_doc Package-level documentation

Description

Adds a dummy .R file that will prompt roxygen to generate basic package-level documentation. If
your package is named "foo", this will make help available to the user via ?foo or package?foo.
Once you call devtools::document(), roxygen will flesh out the .Rd file using data from the
DESCRIPTION. That ensures you don’t need to repeat the same information in multiple places. This
.R file is also a good place for roxygen directives that apply to the whole package (vs. a specific
function), such as global namespace tags like @importFrom.

https://remotes.r-lib.org/articles/dependencies.html#other-sources
https://r-pkgs.org/description.html#dependencies
https://r-pkgs.org

use_pipe 49

Usage

use_package_doc(open = rlang::is_interactive())

Arguments

open Open the newly created file for editing? Happens in RStudio, if applicable, or
via utils::file.edit() otherwise.

See Also

The documentation chapter of R Packages

use_pipe Use magrittr’s pipe in your package

Description

Does setup necessary to use magrittr’s pipe operator, %>% in your package. This function requires
the use roxygen.

• Adds magrittr to "Imports" in DESCRIPTION.

• Imports the pipe operator specifically, which is necessary for internal use.

• Exports the pipe operator, if export = TRUE, which is necessary to make %>% available to the
users of your package.

Usage

use_pipe(export = TRUE)

Arguments

export If TRUE, the file R/utils-pipe.R is added, which provides the roxygen tem-
plate to import and re-export %>%. If FALSE, the necessary roxygen directive is
added, if possible, or otherwise instructions are given.

Examples

Not run:
use_pipe()

End(Not run)

https://r-pkgs.org/man.html
https://r-pkgs.org

50 use_r

use_pkgdown Use pkgdown

Description

pkgdown makes it easy to turn your package into a beautiful website. A couple functions help you
begin to use pkgdown:

• use_pkgdown(): creates a pkgdown config file, adds relevant files or directories to .Rbuildignore
and .gitignore, and builds favicons if your package has a logo.

• use_github_action("pkgdown") configures a GitHub Actions workflow to build and deploy
your pkgdown site whenever you push changes to GitHub. Learn more about use_github_action().
This approach is actively maintained, because it is in use across many tidyverse, r-lib, and
tidymodels packages.

• use_pkgdown_travis() Soft-deprecated helps you set up pkgdown for automatic deploy-
ment on Travis-CI. This is soft-deprecated, as the tidyverse team has shifted away from
Travis-CI and towards GitHub Actions. use_pkgdown_travis() creates an empty gh-pages
branch for the site and prompts about next steps regarding deployment keys and updating
your .travis.yml. Requires that the current user can push to the primary repo, which must
be configured as the origin remote.

Usage

use_pkgdown(config_file = "_pkgdown.yml", destdir = "docs")

use_pkgdown_travis()

Arguments

config_file Path to the pkgdown yaml config file

destdir Target directory for pkgdown docs

See Also

https://pkgdown.r-lib.org/articles/pkgdown.html#configuration

use_r Create or edit R or test files

Description

This pair of functions makes it easy to create paired R and test files, using the convention that the
tests for R/foofy.R should live in tests/testthat/test-foofy.R. You can use them to create
new files from scratch by supplying name, or if you use RStudio, you can call to create (or navigate
to) the paired file based on the currently open script.

https://pkgdown.r-lib.org
https://pkgdown.r-lib.org/articles/pkgdown.html#configuration

use_rcpp 51

Usage

use_r(name = NULL, open = rlang::is_interactive())

use_test(name = NULL, open = rlang::is_interactive())

Arguments

name Either a name without extension, or NULL to create the paired file based on cur-
rently open file in the script editor. If the R file is open, use_test() will cre-
ate/open the corresponding test file; if the test file is open, use_r() will cre-
ate/open the corresponding R file.

open Whether to open the file for interactive editing.

See Also

The testing and R code chapters of R Packages.

use_rcpp Use C, C++, RcppArmadillo, or RcppEigen

Description

Adds infrastructure commonly needed when using compiled code:

• Creates src/

• Adds required packages to DESCRIPTION

• May create an initial placeholder .c or .cpp file

• Creates Makevars and Makevars.win files (use_rcpp_armadillo() only)

Usage

use_rcpp(name = NULL)

use_rcpp_armadillo(name = NULL)

use_rcpp_eigen(name = NULL)

use_c(name = NULL)

Arguments

name If supplied, creates and opens src/name.{c,cpp}.

Details

When using compiled code, please note that there must be at least one file inside the src/ directory
prior to building the package. As a result, if an empty src/ directory is detected, either a .c or .cpp
file will be added.

https://r-pkgs.org/tests.html
https://r-pkgs.org/r.html
https://r-pkgs.org

52 use_readme_rmd

use_readme_rmd Create README files

Description

Creates skeleton README files with sections for

• a high-level description of the package and its goals

• R code to install from GitHub, if GitHub usage detected

• a basic example

Use Rmd if you want a rich intermingling of code and output. Use md for a basic README.
README.Rmd will be automatically added to .Rbuildignore. The resulting README is populated
with default YAML frontmatter and R fenced code blocks (md) or chunks (Rmd).

If you use Rmd, you’ll still need to render it regularly, to keep README.md up-to-date. devtools::build_readme()
is handy for this. You could also use GitHub Actions to re-render README.Rmd every time you push.
An example workflow can be found in the examples/ directory here: https://github.com/r-lib/
actions/.

Usage

use_readme_rmd(open = rlang::is_interactive())

use_readme_md(open = rlang::is_interactive())

Arguments

open Open the newly created file for editing? Happens in RStudio, if applicable, or
via utils::file.edit() otherwise.

See Also

The important files section of R Packages.

Examples

Not run:
use_readme_rmd()
use_readme_md()

End(Not run)

https://github.com/r-lib/actions/
https://github.com/r-lib/actions/
https://r-pkgs.org/release.html#important-files
https://r-pkgs.org

use_release_issue 53

use_release_issue Create a release checklist in a GitHub issue

Description

When preparing to release a package there are quite a few steps that need to be performed, and
some of the steps can take multiple hours. This function creates an issue checklist so that you can
keep track of where you are in the process, and feel a sense of satisfaction as you progress. It also
helps watchers of your package stay informed about where you are in the process.

Usage

use_release_issue(version = NULL)

Arguments

version Optional version number for release. If unspecified, you can make an interactive
choice.

Examples

Not run:
use_release_issue("2.0.0")

End(Not run)

use_revdep Reverse dependency checks

Description

Performs set up for checking the reverse dependencies of an R package, as implemented by the
revdepcheck package:

• Adds revdep directory and adds it to .Rbuildignore

• Populates revdep/.gitignore to prevent tracking of various revdep artefacts

• Creates revdep/email.yml for use with revdepcheck::revdep_email()

• Prompts user to run the checks with revdepcheck::revdep_check()

Usage

use_revdep()

54 use_roxygen_md

use_rmarkdown_template

Add an RMarkdown Template

Description

Adds files and directories necessary to add a custom rmarkdown template to RStudio. It creates:

• inst/rmarkdown/templates/{{template_dir}}. Main directory.
• skeleton/skeleton.Rmd. Your template Rmd file.
• template.yml with basic information filled in.

Usage

use_rmarkdown_template(
template_name = "Template Name",
template_dir = NULL,
template_description = "A description of the template",
template_create_dir = FALSE

)

Arguments

template_name The name as printed in the template menu.
template_dir Name of the directory the template will live in within inst/rmarkdown/templates.

If none is provided by the user, it will be created from template_name.
template_description

Sets the value of description in template.yml.
template_create_dir

Sets the value of create_dir in template.yml.

Examples

Not run:
use_rmarkdown_template()

End(Not run)

use_roxygen_md Use roxygen2 with markdown

Description

If you are already using roxygen2, but not with markdown, you’ll need to use roxygen2md to
convert existing Rd expressions to markdown. The conversion is not perfect, so make sure to check
the results.

Usage

use_roxygen_md()

https://roxygen2md.r-lib.org

use_rstudio 55

use_rstudio Add RStudio Project infrastructure

Description

It is likely that you want to use create_project() or create_package() instead of use_rstudio()!
Both create_*() functions can add RStudio Project infrastructure to a pre-existing project or pack-
age. use_rstudio() is mostly for internal use or for those creating a usethis-like package for their
organization. It does the following in the current project, often after executing proj_set(...,force
= TRUE):

• Creates an .Rproj file

• Adds RStudio files to .gitignore

• Adds RStudio files to .Rbuildignore, if project is a package

Usage

use_rstudio(line_ending = c("posix", "windows"))

Arguments

line_ending Line ending

use_spell_check Use spell check

Description

Adds a unit test to automatically run a spell check on documentation and, optionally, vignettes
during R CMD check, using the spelling package. Also adds a WORDLIST file to the package, which
is a dictionary of whitelisted words. See spelling::wordlist for details.

Usage

use_spell_check(vignettes = TRUE, lang = "en-US", error = FALSE)

Arguments

vignettes Logical, TRUE to spell check all rmd and rnw files in the vignettes/ folder.

lang Preferred spelling language. Usually either "en-US" or "en-GB".

error Logical, indicating whether the unit test should fail if spelling errors are found.
Defaults to FALSE, which does not error, but prints potential spelling errors

56 use_template

use_template Use a usethis-style template

Description

Creates a file from data and a template found in a package. Provides control over file name, the
addition to .Rbuildignore, and opening the file for inspection.

Usage

use_template(
template,
save_as = template,
data = list(),
ignore = FALSE,
open = FALSE,
package = "usethis"

)

Arguments

template Path to template file relative to templates/ directory within package; see details.

save_as Path of file to create, relative to root of active project. Defaults to template

data A list of data passed to the template.

ignore Should the newly created file be added to .Rbuildignore?

open Open the newly created file for editing? Happens in RStudio, if applicable, or
via utils::file.edit() otherwise.

package Name of the package where the template is found.

Details

This function can be used as the engine for a templating function in other packages. The template
argument is used along with the package argument to derive the path to your template file; it
will be expected at fs::path_package(package = package,"templates",template). We use
fs::path_package() instead of base::system.file() so that path construction works even in a
development workflow, e.g., works with devtools::load_all() or pkgload::load_all(). Note
this describes the behaviour of fs::path_package() in fs v1.2.7.9001 and higher.

To interpolate your data into the template, supply a list using the data argument. Internally, this
function uses whisker::whisker.render() to combine your template file with your data.

Value

A logical vector indicating if file was modified.

use_testthat 57

Examples

Not run:
Note: running this will write `NEWS.md` to your working directory
use_template(

template = "NEWS.md",
data = list(Package = "acme", Version = "1.2.3"),
package = "usethis"

)

End(Not run)

use_testthat Sets up overall testing infrastructure

Description

Creates tests/testthat/, tests/testthat.R, and adds the testthat package to the Suggests field.
Learn more in https://r-pkgs.org/tests.html

Usage

use_testthat(edition = NULL, parallel = FALSE)

Arguments

edition testthat edition to use. Defaults to the latest edition, i.e. the major version
number of the currently installed testthat.

parallel Should tests be run in parallel? This feature appeared in testthat 3.0.0; see
https://testthat.r-lib.org/articles/parallel.html for details and caveats.

See Also

use_test() to create individual test files

Examples

Not run:
use_testthat()

use_test()

use_test("something-management")

End(Not run)

https://r-pkgs.org/tests.html
https://testthat.r-lib.org/articles/parallel.html

58 use_tidy_github_actions

use_tibble Prepare to return a tibble

Description

Questioning

Does minimum setup such that a tibble returned by your package is handled using the tibble method
for generics like print() or [. Presumably you care about this if you’ve chosen to store and expose
an object with class tbl_df. Specifically:

• Check that the active package uses roxygen2

• Add the tibble package to "Imports" in DESCRIPTION

• Prepare the roxygen directive necessary to import at least one function from tibble:

– If possible, the directive is inserted into existing package-level documentation, i.e. the
roxygen snippet created by use_package_doc()

– Otherwise, we issue advice on where the user should add the directive

This is necessary when your package returns a stored data object that has class tbl_df, but the
package code does not make direct use of functions from the tibble package. If you do nothing, the
tibble namespace is not necessarily loaded and your tibble may therefore be printed and subsetted
like a base data.frame.

Usage

use_tibble()

Examples

Not run:
use_tibble()

End(Not run)

use_tidy_github_actions

Helpers for tidyverse development

Description

These helpers follow tidyverse conventions which are generally a little stricter than the defaults,
reflecting the need for greater rigor in commonly used packages.

use_tidy_github_actions 59

Usage

use_tidy_github_actions()

use_tidy_pkgdown()

create_tidy_package(path, copyright_holder = NULL)

use_tidy_description()

use_tidy_eval()

use_tidy_contributing()

use_tidy_support()

use_tidy_issue_template()

use_tidy_coc()

use_tidy_github()

use_tidy_style(strict = TRUE)

use_tidy_release_test_env()

Arguments

path A path. If it exists, it is used. If it does not exist, it is created, provided that the
parent path exists.

copyright_holder

Name of the copyright holder or holders. This defaults to "package name au-
thors"; you should only change this if you use a CLA to assign copyright to a
single entity.

strict Boolean indicating whether or not a strict version of styling should be applied.
See styler::tidyverse_style() for details.

Details

• use_tidy_github_actions(): Sets up the following workflows using GitHub Actions:

– Run R CMD check on the current release, devel, and four previous versions of R.
– Report test coverage.
– Build and deploy a pkgdown site.
– Provide two commands to be used in pull requests: /document to run roxygen2::roxygenise()

and update the PR, and /style to run styler::style_pkg() and update the PR.

• use_tidy_pkgdown(): Implements the pkgdown setup used for most tidyverse and r-lib pack-
ages:

– use_pkgdown() does basic local setup
– use_github_pages() prepares to publish the pkgdown site from the github-pages

branch

https://github.com/features/actions

60 use_tidy_thanks

– use_github_action("pkgdown") configures a GitHub Action to automatically build the
pkgdown site and deploy it via GitHub Pages

– The pkgdown site’s URL is added to the pkgdown configuration file, to the URL field of
DESCRIPTION, and to the GitHub repo.

• create_tidy_package(): creates a new package, immediately applies as many of the tidy-
verse conventions as possible, issues a few reminders, and activates the new package.

• use_tidy_description(): puts fields in standard order and alphabetises dependencies.

• use_tidy_eval(): imports a standard set of helpers to facilitate programming with the tidy
eval toolkit.

• use_tidy_style(): styles source code according to the tidyverse style guide. This function
will overwrite files! See below for usage advice.

• use_tidy_contributing(): adds standard tidyverse contributing guidelines.

• use_tidy_issue_template(): adds a standard tidyverse issue template.

• use_tidy_release_test_env(): updates the test environment section in cran-comments.md.

• use_tidy_support(): adds a standard description of support resources for the tidyverse.

• use_tidy_coc(): equivalent to use_code_of_conduct(), but puts the document in a .github/
subdirectory.

• use_tidy_github(): convenience wrapper that calls use_tidy_contributing(), use_tidy_issue_template(),
use_tidy_support(), use_tidy_coc().

use_tidy_style()

Uses the styler package package to style all code in a package, project, or directory, according to
the tidyverse style guide.

Warning: This function will overwrite files! It is strongly suggested to only style files that are
under version control or to first create a backup copy.

Invisibly returns a data frame with one row per file, that indicates whether styling caused a change.

use_tidy_thanks Identify contributors via GitHub activity

Description

Derives a list of GitHub usernames, based on who has opened issues or pull requests. Used to
populate the acknowledgment section of package release blog posts at https://www.tidyverse.
org/blog/. If no arguments are given, we retrieve all contributors to the active project since its last
(GitHub) release. Unexported helper functions, releases() and ref_df() can be useful interac-
tively to get a quick look at release tag names and a data frame about refs (defaulting to releases),
respectively.

Usage

use_tidy_thanks(repo_spec = NULL, from = NULL, to = NULL)

https://style.tidyverse.org
https://styler.r-lib.org
https://style.tidyverse.org
https://www.tidyverse.org/blog/
https://www.tidyverse.org/blog/

use_tutorial 61

Arguments

repo_spec Optional GitHub repo specification in any form accepted for the repo_spec
argument of create_from_github() (plain spec or a browser or Git URL). A
URL specification is the only way to target a GitHub host other than "github.com",
which is the default.

from, to GitHub ref (i.e., a SHA, tag, or release) or a timestamp in ISO 8601 format, spec-
ifying the start or end of the interval of interest, in the sense of [from, to]. Ex-
amples: "08a560d", "v1.3.0", "2018-02-24T00:13:45Z", "2018-05-01". When
from = NULL, to = NULL, we set from to the timestamp of the most recent
(GitHub) release. Otherwise, NULL means "no bound".

Value

A character vector of GitHub usernames, invisibly.

Examples

Not run:
active project, interval = since the last release
use_tidy_thanks()

active project, interval = since a specific datetime
use_tidy_thanks(from = "2020-07-24T00:13:45Z")

r-lib/usethis, interval = since a certain date
use_tidy_thanks("r-lib/usethis", from = "2020-08-01")

r-lib/usethis, up to a specific release
use_tidy_thanks("r-lib/usethis", from = NULL, to = "v1.1.0")

r-lib/usethis, since a specific commit, up to a specific date
use_tidy_thanks("r-lib/usethis", from = "08a560d", to = "2018-05-14")

r-lib/usethis, but with copy/paste of a browser URL
use_tidy_thanks("https://github.com/r-lib/usethis")

End(Not run)

use_tutorial Create a learnr tutorial

Description

Creates a new tutorial below inst/tutorials/. Tutorials are interactive R Markdown documents built
with the learnr package. use_tutorial() does this setup:

• Adds learnr to Suggests in DESCRIPTION.

• Gitignores inst/tutorials/*.html so you don’t accidentally track rendered tutorials.

• Creates a new .Rmd tutorial from a template and, optionally, opens it for editing.

• Adds new .Rmd to .Rbuildignore.

https://rstudio.github.io/learnr/index.html

62 use_version

Usage

use_tutorial(name, title, open = rlang::is_interactive())

Arguments

name Base for file name to use for new .Rmd tutorial. Should consist only of numbers,
letters, _ and -. We recommend using lower case.

title The human-facing title of the tutorial.

open Open the newly created file for editing? Happens in RStudio, if applicable, or
via utils::file.edit() otherwise.

See Also

The learnr package documentation.

Examples

Not run:
use_tutorial("learn-to-do-stuff", "Learn to do stuff")

End(Not run)

use_version Increment package version

Description

use_version() increments the "Version" field in DESCRIPTION, adds a new heading to NEWS.md (if
it exists), and commits those changes (if package uses Git). It makes the same update to a line like
PKG_version = "x.y.z"; in src/version.c (if it exists).

use_dev_version() increments to a development version, e.g. from 1.0.0 to 1.0.0.9000. If the
existing version is already a development version with four components, it does nothing. Thin
wrapper around use_version().

Usage

use_version(which = NULL)

use_dev_version()

Arguments

which A string specifying which level to increment, one of: "major", "minor", "patch",
"dev". If NULL, user can choose interactively.

See Also

The version section of R Packages.

https://rstudio.github.io/learnr/index.html
https://r-pkgs.org/description.html#version
https://r-pkgs.org

use_vignette 63

Examples

Not run:
for interactive selection, do this:
use_version()

request a specific type of increment
use_version("minor")
use_dev_version()

End(Not run)

use_vignette Create a vignette or article

Description

Creates a new vignette or article in vignettes/. Articles are a special type of vignette that ap-
pear on pkgdown websites, but are not included in the package itself (because they are added to
.Rbuildignore automatically).

Usage

use_vignette(name, title = name)

use_article(name, title = name)

Arguments

name Base for file name to use for new vignette. Should consist only of numbers,
letters, _ and -. Lower case is recommended.

title The title of the vignette.

General setup

• Adds needed packages to DESCRIPTION.

• Adds inst/doc to .gitignore so built vignettes aren’t tracked.

• Adds vignettes/*.html and vignettes/*.R to .gitignore so you never accidentally track ren-
dered vignettes.

See Also

The vignettes chapter of R Packages.

Examples

Not run:
use_vignette("how-to-do-stuff", "How to do stuff")

End(Not run)

https://r-pkgs.org/vignettes.html
https://r-pkgs.org

64 zip-utils

zip-utils Download and unpack a ZIP file

Description

Functions to download and unpack a ZIP file into a local folder of files, with very intentional default
behaviour. Useful in pedagogical settings or anytime you need a large audience to download a
set of files quickly and actually be able to find them. The underlying helpers are documented in
use_course_details.

Usage

use_course(url, destdir = getOption("usethis.destdir"))

use_zip(
url,
destdir = getwd(),
cleanup = if (rlang::is_interactive()) NA else FALSE

)

Arguments

url Link to a ZIP file containing the materials. To reduce the chance of typos in live
settings, these shorter forms are accepted:

* GitHub repo spec: "OWNER/REPO". Equivalent to
`https://github.com/OWNER/REPO/DEFAULT_BRANCH.zip`.

* bit.ly or rstd.io shortlinks: "bit.ly/xxx-yyy-zzz" or "rstd.io/foofy".
The instructor must then arrange for the shortlink to point to a valid
download URL for the target ZIP file. The helper
[create_download_url()] helps to create such URLs for GitHub, DropBox,
and Google Drive.

destdir The new folder is stored here. If NULL, defaults to user’s Desktop or some
other conspicuous place. You can also set a default location using the option
usethis.destdir, e.g. options(usethis.destdir = "a/good/dir"), per-
haps saved to your .Rprofile with edit_r_profile()

cleanup Whether to delete the original ZIP file after unpacking its contents. In an in-
teractive setting, NA leads to a menu where user can approve the deletion (or
decline).

Value

Path to the new directory holding the unpacked ZIP file, invisibly.

Functions

• use_course: Designed with live workshops in mind. Includes intentional friction to highlight
the download destination. Workflow:

– User executes, e.g., use_course("bit.ly/xxx-yyy-zzz").
– User is asked to notice and confirm the location of the new folder. Specify destdir or

configure the "usethis.destdir" option to prevent this.

zip-utils 65

– User is asked if they’d like to delete the ZIP file.
– If new folder contains an .Rproj file, a new instance of RStudio is launched. Otherwise,

the folder is opened in the file manager, e.g. Finder or File Explorer.

• use_zip: More useful in day-to-day work. Downloads in current working directory, by de-
fault, and allows cleanup behaviour to be specified.

Examples

Not run:
download the source of usethis from GitHub, behind a bit.ly shortlink
use_course("bit.ly/usethis-shortlink-example")
use_course("http://bit.ly/usethis-shortlink-example")

download the source of rematch2 package from CRAN
use_course("https://cran.r-project.org/bin/windows/contrib/3.4/rematch2_2.0.1.zip")

download the source of rematch2 package from GitHub, 4 ways
use_course("r-lib/rematch2")
use_course("https://api.github.com/repos/r-lib/rematch2/zipball/HEAD")
use_course("https://api.github.com/repos/r-lib/rematch2/zipball/master")
use_course("https://github.com/r-lib/rematch2/archive/master.zip")

End(Not run)

Index

∗ git helpers
use_git, 34
use_git_config, 42
use_git_hook, 42
use_git_ignore, 43

∗ project functions
proj_sitrep, 20
proj_utils, 21

activates, 9, 11
active project, 20

badges, 3
browse-this, 5
browse_circleci (browse-this), 5
browse_cran (browse-this), 5
browse_github (browse-this), 5
browse_github_actions (browse-this), 5
browse_github_issues (browse-this), 5
browse_github_pulls (browse-this), 5
browse_github_pulls(), 25
browse_package (browse-this), 5
browse_project (browse-this), 5
browse_travis (browse-this), 5

ci, 6
create_from_github, 8
create_from_github(), 61
create_github_token (github-token), 12
create_package, 10
create_package(), 32, 55
create_project (create_package), 10
create_project(), 55
create_tidy_package

(use_tidy_github_actions), 58
create_tidy_package(), 11

data(), 31

edit, 11
edit_git_config (edit), 11
edit_git_ignore (edit), 11
edit_r_buildignore (edit), 11
edit_r_environ (edit), 11
edit_r_makevars (edit), 11

edit_r_profile (edit), 11
edit_r_profile(), 8, 16, 32, 64
edit_rstudio_prefs (edit), 11
edit_rstudio_snippets (edit), 11

fs::path(), 22
fs::path_home(), 12
functions that work pull requests, 8

gert::git_config(), 42
gert::git_config_global_set(), 42
gert::git_config_set(), 42
gh::gh(), 9, 13, 35
gh::gh_token(), 9, 35
gh::gh_whoami(), 13
gh_token_help (github-token), 12
gh_token_help(), 9, 15, 24, 35
git_branch_default, 15
git_credentials, 15
git_protocol, 16
git_protocol(), 10
git_remotes (use_git_remote), 43
git_sitrep, 17
git_vaccinate, 17
git_vaccinate(), 17
github-token, 12
github_actions, 14, 37

issue-this, 17
issue_close_community (issue-this), 17
issue_reprex_needed (issue-this), 17

licenses, 18
local_project (proj_utils), 21

magick::geometry, 46

pr_fetch (pull-requests), 23
pr_finish (pull-requests), 23
pr_forget (pull-requests), 23
pr_init (pull-requests), 23
pr_init(), 8
pr_merge_main (pull-requests), 23
pr_pause (pull-requests), 23
pr_pull (pull-requests), 23

66

INDEX 67

pr_push (pull-requests), 23
pr_resume (pull-requests), 23
pr_view (pull-requests), 23
proj_activate, 20
proj_get (proj_utils), 21
proj_path (proj_utils), 21
proj_set (proj_utils), 21
proj_sitrep, 20, 22
proj_utils, 20, 21
pull-requests, 23

rename_files, 26
reverse dependency checks, 30
rprofile-helper, 26

save(), 31
spelling, 55
spelling::wordlist, 55
styler::tidyverse_style(), 59

tidy_label_colours (use_github_labels),
38

tidy_label_descriptions
(use_github_labels), 38

tidy_labels (use_github_labels), 38
tidy_labels_rename (use_github_labels),

38
tidyverse (use_tidy_github_actions), 58

use_addin, 27
use_agpl3_license (licenses), 18
use_agpl_license (licenses), 18
use_apache_license (licenses), 18
use_apl2_license (licenses), 18
use_appveyor (ci), 6
use_appveyor_badge (ci), 6
use_article (use_vignette), 63
use_badge (badges), 3
use_binder_badge (badges), 3
use_bioc_badge (badges), 3
use_blank_slate, 27
use_build_ignore, 28
use_c (use_rcpp), 51
use_cc0_license (licenses), 18
use_ccby_license (licenses), 18
use_circleci (ci), 6
use_circleci_badge (ci), 6
use_citation, 28
use_code_of_conduct, 29
use_conflicted (rprofile-helper), 26
use_course (zip-utils), 64
use_course(), 10
use_course_details, 64

use_coverage, 29
use_covr_ignore (use_coverage), 29
use_cpp11, 30
use_cran_badge (badges), 3
use_cran_comments, 30
use_data, 30
use_data(), 33
use_data_raw (use_data), 30
use_data_table, 32
use_description, 32
use_description(), 11, 32, 33
use_description_defaults

(use_description), 32
use_dev_package (use_package), 48
use_dev_version (use_version), 62
use_devtools (rprofile-helper), 26
use_directory, 33
use_directory(), 29
use_git, 34, 42, 43
use_git_config, 34, 42, 43
use_git_credentials (git_credentials),

15
use_git_hook, 34, 42, 42, 43
use_git_ignore, 34, 42, 43, 43
use_git_protocol (git_protocol), 16
use_git_remote, 43
use_github, 34
use_github(), 10
use_github_action, 36
use_github_action(), 14, 50
use_github_action(pkgdown), 40, 60
use_github_action_check_full

(use_github_action), 36
use_github_action_check_release

(use_github_action), 36
use_github_action_check_standard

(use_github_action), 36
use_github_action_pr_commands

(use_github_action), 36
use_github_actions (github_actions), 14
use_github_actions(), 4, 6, 37
use_github_actions_badge

(github_actions), 14
use_github_labels, 38
use_github_links, 39
use_github_links(), 34
use_github_pages, 40
use_github_pages(), 59
use_github_release, 41
use_gitlab_ci (ci), 6
use_gpl3_license (licenses), 18
use_gpl_license (licenses), 18

68 INDEX

use_jenkins, 45
use_lgpl_license (licenses), 18
use_lifecycle, 45
use_lifecycle_badge (badges), 3
use_lifecycle_badge(), 45
use_logo, 46
use_make, 46
use_make(), 45
use_mit_license (licenses), 18
use_namespace, 47
use_news_md, 47
use_package, 48
use_package_doc, 48
use_package_doc(), 58
use_partial_warnings (rprofile-helper),

26
use_pipe, 49
use_pkgdown, 50
use_pkgdown(), 59
use_pkgdown_travis (use_pkgdown), 50
use_proprietary_license (licenses), 18
use_r, 50
use_rcpp, 51
use_rcpp_armadillo (use_rcpp), 51
use_rcpp_eigen (use_rcpp), 51
use_readme_md (use_readme_rmd), 52
use_readme_rmd, 52
use_release_issue, 53
use_reprex (rprofile-helper), 26
use_revdep, 53
use_rmarkdown_template, 54
use_roxygen_md, 54
use_rstudio, 55
use_rstudio(), 11
use_spell_check, 55
use_template, 56
use_test (use_r), 50
use_test(), 57
use_testthat, 57
use_tibble, 58
use_tidy_ci (use_tidy_github_actions),

58
use_tidy_coc (use_tidy_github_actions),

58
use_tidy_contributing

(use_tidy_github_actions), 58
use_tidy_description

(use_tidy_github_actions), 58
use_tidy_eval

(use_tidy_github_actions), 58
use_tidy_github

(use_tidy_github_actions), 58

use_tidy_github_actions, 58
use_tidy_github_actions(), 14
use_tidy_issue_template

(use_tidy_github_actions), 58
use_tidy_labels (use_github_labels), 38
use_tidy_pkgdown

(use_tidy_github_actions), 58
use_tidy_pkgdown(), 41
use_tidy_release_test_env

(use_tidy_github_actions), 58
use_tidy_style

(use_tidy_github_actions), 58
use_tidy_support

(use_tidy_github_actions), 58
use_tidy_thanks, 60
use_travis (ci), 6
use_travis_badge (ci), 6
use_tutorial, 61
use_usethis (rprofile-helper), 26
use_version, 62
use_vignette, 63
use_vignette(), 33
use_zip (zip-utils), 64
utils::file.edit(), 27, 30, 31, 37, 47, 49,

52, 56, 62

whisker::whisker.render(), 56
with_project (proj_utils), 21

zip-utils, 64

	badges
	browse-this
	ci
	create_from_github
	create_package
	edit
	github-token
	github_actions
	git_branch_default
	git_credentials
	git_protocol
	git_sitrep
	git_vaccinate
	issue-this
	licenses
	proj_activate
	proj_sitrep
	proj_utils
	pull-requests
	rename_files
	rprofile-helper
	use_addin
	use_blank_slate
	use_build_ignore
	use_citation
	use_code_of_conduct
	use_coverage
	use_cpp11
	use_cran_comments
	use_data
	use_data_table
	use_description
	use_directory
	use_git
	use_github
	use_github_action
	use_github_labels
	use_github_links
	use_github_pages
	use_github_release
	use_git_config
	use_git_hook
	use_git_ignore
	use_git_remote
	use_jenkins
	use_lifecycle
	use_logo
	use_make
	use_namespace
	use_news_md
	use_package
	use_package_doc
	use_pipe
	use_pkgdown
	use_r
	use_rcpp
	use_readme_rmd
	use_release_issue
	use_revdep
	use_rmarkdown_template
	use_roxygen_md
	use_rstudio
	use_spell_check
	use_template
	use_testthat
	use_tibble
	use_tidy_github_actions
	use_tidy_thanks
	use_tutorial
	use_version
	use_vignette
	zip-utils
	Index

